ΔSUV evaluation in DLBCL

Emmanuel Itti, MD PhD
H. Mondor Hospital, AP-HP
Paris-Est University, Créteil, FR
Criteria for interim PET assessment
Quantitative analysis in AOM00152

- Retrospective analysis
- 92 pts with DLBCL, median f-u 4 y

Baseline PET:
- SUV_{max} in the most active lesion
- whichever CT size or location

Interim PET:
- if (+) \rightarrow in the most active lesion
- if (–) \rightarrow in the area of PET_0 tumor

Calculation of % of SUV_{max} reduction
Optimal cut-offs determined by ROC

Visual vs. quantitative analysis
2 cycles, n=92

Visual analysis
(Créteil, MRU)

Quantitative analysis
(SUV$_{\text{max}}$ at 2 cycles)

Quantitative analysis
(% reduction SUV$_{\text{max}}$)

→ Reduction of 14/17 false positives
→ Cut-off may vary with histology, treatment, PET center

Visual vs. quantitative analysis
4 cycles, n=80

→ Reduction of false positives if we wait for 4 cycles
→ Juweid criteria acceptable, Créteil slightly better
→ Visual analysis reliable, ΔSUV more objective

Qualitative assessment at 4 cycles
Independent prognostic factor

<table>
<thead>
<tr>
<th>Overall Model Fit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Null model -2 Log Likelihood</td>
</tr>
<tr>
<td>Full model -2 Log Likelihood</td>
</tr>
<tr>
<td>Chi-square</td>
</tr>
<tr>
<td>DF</td>
</tr>
<tr>
<td>Significance level</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coefficients and Standard Errors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Covariate</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>PET4vis</td>
</tr>
<tr>
<td>IPI</td>
</tr>
<tr>
<td>ASCT</td>
</tr>
<tr>
<td>GC_NGC</td>
</tr>
<tr>
<td>Ritux</td>
</tr>
</tbody>
</table>

→ Independent from IPI, treatment regimen, gene profiles
Quantitative assessment at 2 cycles
Independent prognostic factor

→ ΔSUV reflects tumoral destruction kinetics
Association of both ΔSUV-PET2 and visual-PET4

Overall Model Fit

<table>
<thead>
<tr>
<th>Covariate</th>
<th>b</th>
<th>SE</th>
<th>P</th>
<th>Exp(b)</th>
<th>95% CI of Exp(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET2red4vis</td>
<td>1,2301</td>
<td>0,274</td>
<td>0,0000</td>
<td>3,4215</td>
<td>2,0050 to 5,8389</td>
</tr>
<tr>
<td>IPI</td>
<td>0,1147</td>
<td>0,2053</td>
<td>0,5764</td>
<td>1,1215</td>
<td>0,7555 to 1,5720</td>
</tr>
<tr>
<td>ASCT</td>
<td>-0,8722</td>
<td>0,5177</td>
<td>0,0920</td>
<td>0,4180</td>
<td>0,1575 to 0,8189</td>
</tr>
<tr>
<td>GC_NGC</td>
<td>0,2953</td>
<td>0,4776</td>
<td>0,5364</td>
<td>1,3435</td>
<td>0,5156 to 3,4215</td>
</tr>
<tr>
<td>Ritux</td>
<td>-0,2408</td>
<td>0,4791</td>
<td>0,6153</td>
<td>0,7860</td>
<td>0,3056 to 1,7020</td>
</tr>
</tbody>
</table>

P = 0,0002

n=60

n=10
Limitations of ΔSUV

- Necessity of a baseline PET
- Tumors with baseline uptake <10.0
- SUV variability/normalization to internal bkg
- No external validation
Tumors with baseline uptake <10.0
influence of baseline SUV on ΔSUV

No event, EFS = 0
(n=60)

Event, EFS = 1
(n=32)

\rightarrow 3 FP pts w/ baseline SUV<10.0, ΔSUV<66%, no event
SUV variability
normalization to liver activity

Raw ΔSUV
(cut-off 66%)

ΔSUV / liver
(cut-off 66%)

ΔSUV / liver
(cut-off 60%)

ΔSUV = 100 \times \frac{\text{SUV}_{T1}/\text{SUV}_{L1} - \text{SUV}_{T2}/\text{SUV}_{L2}}{\text{SUV}_{T1}/\text{SUV}_{L1}}$
SUV variability
normalization to MBP activity

![Graphs showing survival probability with SUV variability normalization to MBP activity](image)

$$\Delta \text{SUV} = 100 \times \frac{\text{SUV}_{T1}/\text{SUV}_{M1} - \text{SUV}_{T2}/\text{SUV}_{M2}}{\text{SUV}_{T1}/\text{SUV}_{M1}}$$
Conclusions

- Must follow strict procedure for injection, delay between injection and scanning, glucose level
- Same procedure to identify SUVmax, with help of the MIP, graded color scale
- No need for an internal reference
- External validation: ongoing (PETAL, IVS)