ΔSUV evaluation in DLBCL

Emmanuel Itti, MD PhD

H. Mondor Hospital, AP-HP Paris-Est University, Créteil, FR

Menton April 8th, 2010

Criteria for interim PET assessment Quantitative analysis in AOM00152

Retrospective analysis

92 pts with DLBCL, median f-u 4 y

- Baseline PET :
 - SUVmax in the most active lesion
 whichever CT size or location
- Interim PET :
 - if (+) \rightarrow in the most active lesion
 - if (–) \rightarrow in the area of PET_0 tumor
- Calculation of % of SUVmax reduction
- Optimal cut-offs determined by ROC

Visual vs. quantitative analysis 2 cycles, n=92

 \rightarrow Reduction of 14/17 false positives \rightarrow Cut-off may vary with histology, treatment, PET center

Lin, Itti et al. J Nucl Med 2007;48:1626-32

Visual vs. quantitative analysis 4 cycles, n=80

→ Reduction of false positives if we wait for 4 cycles → Juweid criteria acceptable, Créteil slightly better → Visual analysis reliable, Δ SUV more objective

Qualitative assessment at 4 cycles Independent prognostic factor

Overall Model Fit

Null model -2 Log Likelihood	154,74219
Full model -2 Log Likelihood	134,96769
Chi-square	19,7745
DF	5
Significance level	P = 0,0014

Coefficients and Standard Errors

	Covariate	b	SE	P	Exp(b)	95% CI of Exp(b)
1	PET4vis	1,9252	0,4775 🤇	0,0001	6,8563	2,7023 to 17,3960
	IPI	0,2145	0,1907	0,2606	1,2392	0,8545 to 1,7973
	ASCT	-1,1057	0,5192	0,0332	0,3310	0,1203 to 0,9110
	GC_NGC	0,0465	0,4602	0,9196	1,0476	0,4270 to 2,5701
	Ritux	-0,3421	0,4812	0,4771	0,7103	0,2779 to 1,8152

\rightarrow Independent from IPI, treatment regimen, gene profiles

Quantitative assessment at 2 cycles

Independent prognostic factor

 $\rightarrow \Delta SUV$ reflects tumoral destruction kinetics

Association of both ASUV-PET2 and visual-PET4

Overall Model Fit

Null model -2 Log Likelihood	154,74219
Full model -2 Log Likelihood	130,92093
Chi-square	23,8213
DF	5
Significance level	P = 0,0002

Coefficients and Standard Errors

Limitations of Δ SUV

- Necessity of a baseline PET
- Tumors with baseline uptake <10.0</p>
- SUV variability/normalization to internal bkg
- No external validation

Tumors with baseline uptake <10.0 influence of baseline SUV on ∆SUV

 \rightarrow 3 FP pts w/ baseline SUV<10.0, Δ SUV<66%, no event

SUV variability normalization to liver activity

$$\Delta SUV = 100 \times \frac{SUV_{T1}/SUV_{L1} - SUV_{T2}/SUV_{L2}}{SUV_{T1}/SUV_{L1}}$$

SUV variability normalization to MBP activity

$$\Delta SUV = 100 \times \frac{SUV_{T1}/SUV_{M1} - SUV_{T2}/SUV_{M2}}{SUV_{T1}/SUV_{M1}}$$

Conclusions

- Must follow strict procedure for injection, delay between injection and scanning, glucose level
- Same procedure to identify SUVmax, with help of the MIP, graded color scale
- No need for an internal reference
- External validation : ongoing (PETAL, IVS)