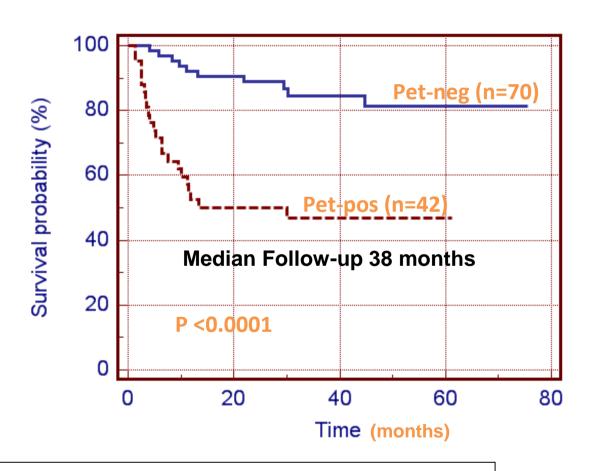
Early interim PET (PET2) in diffuse large B-cell lymphoma (DLBCL) patients treated with R-CHOP

An International Validation Study (IVS)

Corinne Haioun¹& Emmanuel Itti², Olivier Casasnovas³, Alina Berriolo⁴, Andrea Gallamini⁵, Alberto Biggi⁶, Pierre Vera⁷, Hervé Tilly⁸, Michel Meignan²

Lymphoid malignancies Unit¹ and Nuclear Medicine², Hôpital Henri Mondor, Créteil, France Departments of Hematology³ and Nuclear Medicine⁴, Dijon, France Departments of Hematology5and Nuclear Medicine⁶ Cuneo, Italy Departments of Hematology7 and Nuclear Medicine⁸, Centre Henri Becquerel, Rouen, France

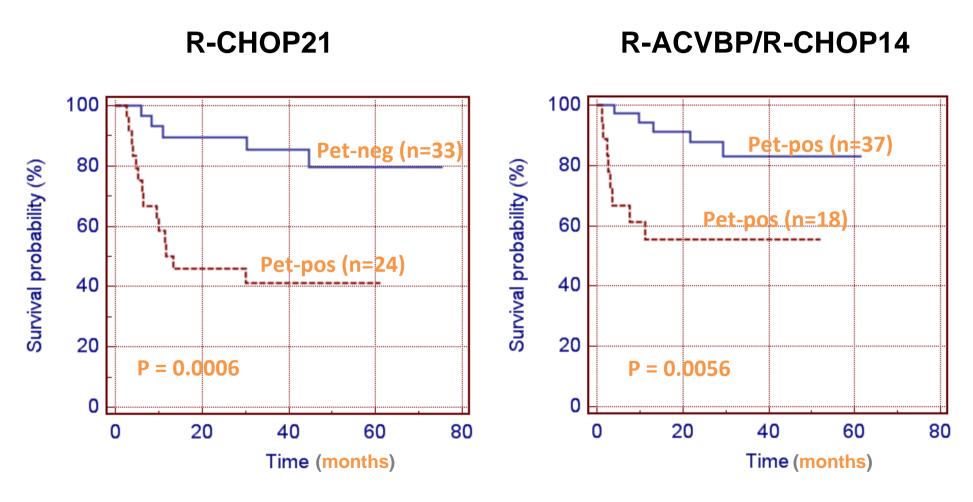

Background

- First-line treatment should aim at curing the patient
- Despite high-dose therapy, cure rates remain low for relapsed/refractory patients
- Risk-adapted treatment can potentially increase cure rates

Predictive value of interim PET

Study	n	Interim PET after	median follow up (months)	Pet -	Pet +	Rituximab
Jerusalem Haematologica 2000	28 (16 DLBCL)	median of 3 cycles	17.5	PFS 2y=62%	PFS 2y=0%	X
Spaepen Ann Oncol 2002	70 (47 DLBCL)	3-4 cycles	36.3	PFS 2y=85%	PFS 2y=4%	X
Kostakoglu J Nucl Med 2002	30 (13 DLBCL)	1 cycle	19	PFS 2y=85%	PFS 2y<15%	X
Mikhaeel Ann Oncol 2005	120 (75 DLBCL)	2-3 cycles	24.4	PFS 5y=87%	PFS 5y=34%	?
Haioun, Itti Blood 2005	90 (85 DLBCL)	2 cycles	24	EFS 2y=82%	EFS 2y=43%	41%
Dupuis, Itti Ann Oncol 2009	103 (all DLBCL)	4 cycles	53	EFS 5y=80%	EFS 5y=36%	49%

Progression Free Survival according to PET after C2. A Rituximab-chemotherapy treated cohort of 112 patients



5-y PFS : PET-neg = 81% [CI95%:70%-92%]

PET-pos = 47% [CI95%:32%-62%]

Safar V. ASH 2009

PFS according to PET after C2 and treatment type

Safar V. ASH 2009

Deauville Criteria: Five points scale (5PS)

- 1. No uptake
- 2. Uptake ≤ mediastinum
- 3. Uptake > mediastinum but ≤ liver
 - -----
- 4. Uptake moderately increased above liver at any site
- 5. Markedly increased uptake at any site including new sites of disease

Purpose

- Predictive value of interim PET after 2 cycles of treatment, in a large prospective cohort of patients uniformly treated with R-CHOP using Deauville Criteria?
- 49 patients with newly diagnosed DLBCL
- 4 centres (Rouen, Créteil, Cuneo, Dijon)
- May 2005 to July 2009
- Treatment: R-CHOP21 or R-CHOP14

Validation study: inclusion criteria

- DLBCL
- Therapy: R-CHOP (14 or 21): 4 8 cycles
- Staging at baseline and after two courses of R-CHOP with PET-CT (PET-0 and PET-2)
- No treatment change depending on interim-PET results.
- Patients that have been treated with HDT followed by stem cell rescue for progressive /resistant lymphoma during R-CHOP chemotherapy are eligible only if HDT has been decided on evidence of persistent disease (clinical, histological or imaging data) after at least 4 cycles
- PET scan performed with PET-CT technology
- PET-0 and PET-2 performed in the same PET center
- Agreement, by the nuclear team that have performed the scan to submit the studies to the central review panel and to upload the images on dicom format to the dedicated site for reviewing.

Patients characteristics

patients: n= 49						
Male	67%					
Median age	58 y (23-76)					
>60 y	18%					
PS ≥ 2	22%					
Ann Arbor III-IV	31%					
LDH>1N	67%					
>1 extranodal site	27%					
IPI						
L (0-1F)	34%					
L-I (2F)	24%					
I-H (3F)	22%					
H (4-5F)	20%					

Treatments

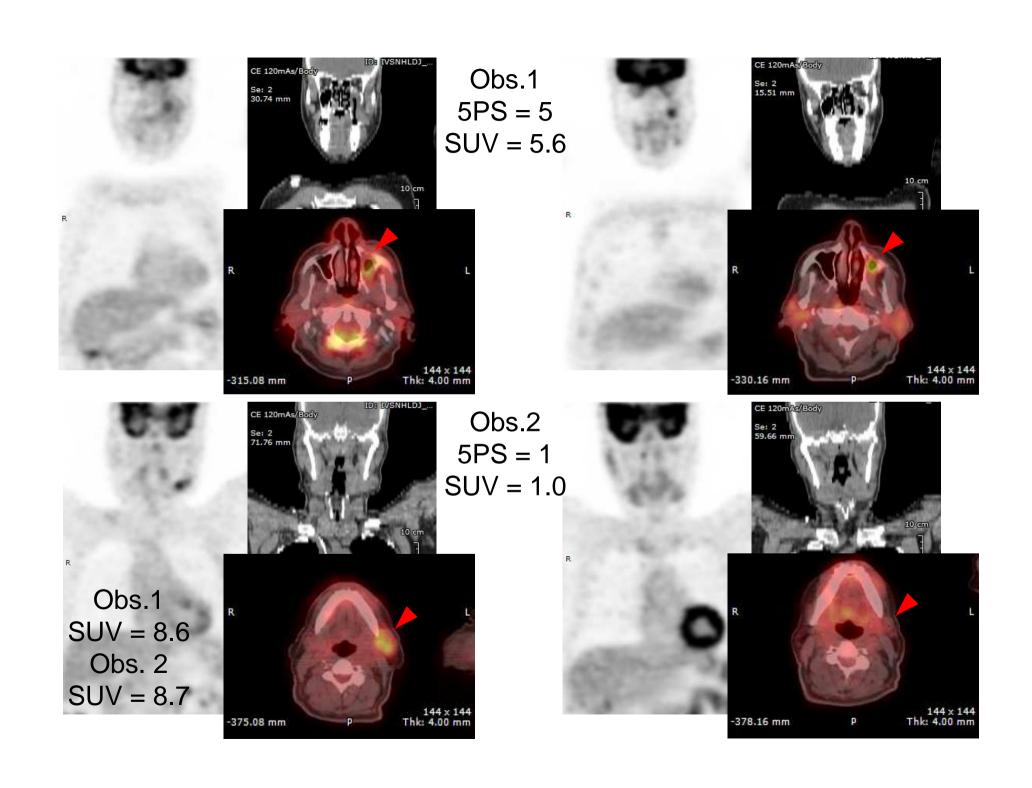
IPI	R-CHOP14 n=23 (47%) n	R-CHOP21 n=26 (53%) n	Total
L (0-1 F)	4	12	16
L-I (2 F)	8	4	12
I-H (3 F)	6	5	11
H (4-5 F)	5	5	10

Treatment strategy

- Induction: R-CHOP: 4 cycles
- PET after 2 cycles
 - R-CHOP14: median: 12 d (9-15)
 - R-CHOP21: median: 22 d (12-23)
- No impact of PET2 on therapeutic strategy
- Consolidation by age, aa-IPI, response at 4 cycles and local policies

Consolidative treatment (after 4 cycles or more)

- 42 responding patients continued R-CHOP
- Four patients with bulky tumor received consolidative IF radiotherapy after 7-8 cycles
- Two patients progressed on the basis of IWC 99 criteria and were withdrawn from the study
- Five patients received high-dose chemotherapy followed by ASCT - after 3 cycles of RICE - on the basis of PET4 positive

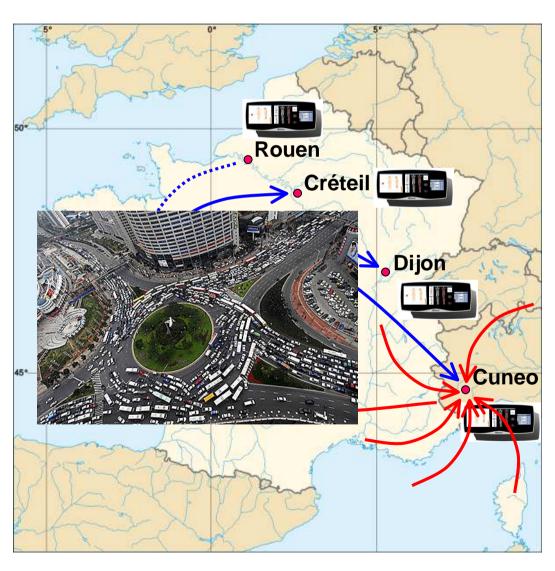

Analysis

Median follow-up: 24 months

- EFS according to 5PS analysis
 - Events being defined as modification of scheduled treatment (R-CHOP), active disease or progression according to local criteria (IWC+PET or PET only) and death

IVS problems : Clinical

- Inclusion criteria not fully observed
 - therapy modification guided by PET
 - short follow-up (inclusions after April 2009)
- Small number of patients (49)
- Small number of centers (4)
- Identification of the target pre/post-therapy
- Variability 5PS/SUV computation



IVS problems: Technical

- Acquisition parameters not available
 - glucose level, SUV calibration factor
 - delay between inj. and scanning (to be computed)
- Corrupted files (need to re-transfer)
- Non attenuation-corrected scans missing
- Absence of organization of the data transferred
 - NAC, CT-AC, CT, CECT, CECT-AC

Network traffic

NHL: 49 patients; HL: 108 patients

2 IVS at the same time:

- 98 PET/CTs for NHL over a 1-month period (≈ 15 GB)
- 216 PET/CTs for HL over a 2-day period (≈ 32 GB)

Conclusion

- Need to recruit new patients, new centers
- Other immunochemotherapy regimens (DI)
- Objective : to reach 100-200 pts
- Better control of inclusion/exclusion criteria
- Continuous work instead of last-minute work