

18F-Thymidine in Lymphoma: Imaging Proliferation

Andreas K. Buck Technische Universität München

Nuklearmedizinische Klinik im Klinikum rechts der Isar der Technischen Universität München

ТП

Potential advantages of imaging proliferation

- FDG-PET (PET/CT): high diagnostic accuracy for (re-)staging and therapeutic monitoring in Hodgkin's disease and aggressive NHL
- Reduced specificity, tumor grading: 45% in ´grey zone` (NHL) (Schoder et al. JCO 2005)
- Hypothesis: alteration of DNA synthesis reflects cell injury better than glucose utilization

Unspecific FDG-uptake 1 year after remission of aggressive NHL

Histology: Lymphadenopathy (courtesy of P. Castellucci, Bologna)

Imaging of Target Systems Cancer

Nuklearmedizinische Klinik im Klinikum rechts der Isar der Technischen Universität München

Potential advantages of imaging proliferation

- Differentiation viable tumor / inflammatory, benign lesions
- Detection of lymphoma in organs with high physiologic FDG-uptake (brain)
- Tumor grading / transformation to more aggressive histology
- Drug development

ARIMA Assessment of proliferative activity *in-vitro*

- standard: thymidine analogs
- thymidine not used for RNA synthesis (other than adenine, cytidine and guanine)
- thymidine is taken up by proliferating cells and utilized for synthesis of DNA
 - [³H]Thymidin / TLI
 - BUdR
 - Monoclonal antibodies specific for Ki-67 (MIB-1 mAb, expression during G1-, S- or G2-phase)
 - PCNA

Assessment of proliferation with radiolabeled thymidine analogs

A.F. Shields, Mol Imaging Biol 2006

Metabolization of [¹¹C]Thymidine and [¹⁸F]FLT

Imaging Cell Proliferation

TK1-activity during cell cycle

[¹⁸F]FLT uptake correlates to S-phase fraction

[¹⁸F]FLT in BxPc-3 pancreatic carcinoma cell line

Seitz et al., Eur J Nucl Med 2001.

IIII ARIM Non-invasive imaging of proliferation in solid cancers

18**F**

Lung cancer (NSCLC)

Pancreatic cancer / Mass forming pancreatitis

Bone / Soft tissue sarcoma

Buck et al., Clin Cancer Res 2008.

GI tract cancers (HCC, CCC, gastric cancer)

Herrmann, Buck, J Nucl Med. 2008. Herrmann, Buck, J Nucl Med. 2009.

FDG-PET

Buck et al., Eur J Nucl Med Mol Imaging 2005.

Specific uptake in malignant lung lesions

histo	FLT- PET plogy	+	-		FDG- RET histology	+	-	
	+	19	2	21	+	18	1	19
	-	0	15	15	-	4	11	15
		19	17	36		22	12	34
	Sensitivity: 90%				Sensitivity: 94%			

Sensitivity:	90%	Sensitivity:	94%
Specifity:	100%	Specificity:	73%
PPV:	100%	PPV:	82%
NPV:	88%	NPV:	92%
Accuracy:	94%	Accuracy:	85%

Specific uptake in malignant tumors (Laryngotracheitis)

FDG-PET

FLT-PET

Biodistribution of [18F]FLT in follicular lymphoma

[¹⁸F]FLT in NHL (DLBCL)

Biodistribution of FLT and FDG 1h after i.v.-injection (370 MBq)

	FLT	FDG
Lymphom	4,5 +/- 2,7	5,0 +/- 3,3
Knochmark	6,9 +/- 2,4	2,2 +/- 0,7
Leber	4,6 +/- 1,4	2,3 +/- 0.6
Milz	2,9 +/- 3,0	2,1 +/- 0,7
Darm	1,8 +/- 0,5	1,4 +/- 0,4
Lunge	0,46 +/- 0,1	0,5 +/- 0,1
Gehirn	0,21 +/- 0,1	6,5 +/- 3,1

Buck et al. Cancer Res 2006.

[¹⁸F]FLT for (re-)staging malignant lymphomas Large cell diffuse B-NHL (stage IV) FLT-PET FDG-PET

- no change of Ann Arbor classification
- bone lesions not detected in 2 pts.
- additional lesions detected in 4 pts.

Buck et al. Cancer Res 2006. Wagner, Seitz, Buck et al. Cancer Res 2003.

Detection osseous lesions (large cell centroblastic B-NHL)

FDG-PET

FLT-PET

Detection of bone manifestation in Hodgkin`s disease

FDG-PET

FLT-PET

Detection of cerebral lymphoma (large cell centroblastic B-NHL)

Detection of brain lesions (large cell centroblastic B-NHL)

FLT-PET

FDG-PET/CT

4wk

Grading of lymphoma with FLT-PET

Follicular lymphoma grade I

Large cell anaplastic lymphoma

Nuklearmedizinische Klinik im Klinikum rechts der Isar der Technischen Universität München [Buck et al. Cancer Res 2006]

Buck et al. Cancer Res 2006.

Pt. 19: follicular NHL grade I, recurrence: grade 3

Correlation of FLT- SUV with proliferative activity (Ki-67 index)

Buck et al. Cancer Res 2006.

Response assessment with [18F]FLT

- "Inhibition of tumor proliferation may represent an early marker for response to therapy leading to earlier treatment decisions"
- Scans must be reproducible so that serial scans reflect therapy effects
- Reproducibility shown for [¹⁸F]FLT microPET and human studies
- moderately low variability -14% (FDG in human studies: 6-10%)

[¹⁸F]FLT for assessment of therapy response

Fig. 2. Cellular uptake of $[^{18}F]FLT$ per culture (a) or normalised for 10^5 cells (b) at different doses of 5-FU, MTX, CDDP or GEM. The drug concentrations in the culture media are given in μM . FLT accumulation was measured after 24 or 72 h recovery from treatment. The data are expressed as mean values normalised for the control from repeated experiments, with error bars representing SD

Dittmann et al., EJNMMI 2002.

de novo synthesis of thymidylate and salvage pathway

Chemotherapeutic drugs inhibit thymidylate synthase (TS) or dihydrofolatreductase (THFR) und can therefore upregulate the salvage pathway (increase of [¹⁸F]FLT-uptake)

[¹⁸F]FLT- PET in RIF-1 sarcoma mouse model

Nuklearmedizinische Klinik im Klinikum rechts der Isar der Technischen Universität München Barthel et al, Cancer Res., 2005.

[¹⁸F]FLT- and [¹⁸F]FDG-PET in RIF-1 sarcoma mouse model

[¹⁸F]FLT- and [¹⁸F]FDG-uptake in RIF-1 tumors after treatment with 5-FU (165 mg/kg; i.p.)

Uptake of [¹⁸F]FLT after inhibition of *de novo* synthesis of TMP (thymidylate)

100%

0%

Tissue / heart ratio

2.0

1.5

1.0

0.5

0.0

0

10

20

30

[¹⁸F]FLT-PET 60 min after treatment

control (PBS) 5-FU (165 mg/kg i.p.) [Perumal et al, Cancer Res 2006]

[¹⁸F]FLT-PET 48 h after treatment

5-FU (165 mg/kg i.p.)

control (PBS)

ě Į į Į į į

40

50

60

Nuklearmedizinische Klinik im Klinikum rechts der Isar der Technischen Universität München Barthel et al, Cancer Res. 2005.

Significant reduction of FLT-uptake in RIF-1 tumors 24 h after chemotherapy with cisplatin

[Leyton et al., Cancer Res 2005]

control

ТП

immunotherapy

radioimmunotherapy chemotherapy

Proliferative activity and FLT-uptake 48 h after treatment

Buck et al ; Eur J Nucl Med Mol Imaging 2007.

Early reduction in FLT-uptake correlates to decreased proliferation and induction of apoptosis

Anticipated alterations of metabolism of radionucleosides after various treatments

Drug	Target	Effect on tumor size	Anticipated effect on TK1	Anticipated imaging response
Cisplatin	DNA formation	Ļ	Ļ	Ļ
Cyclophosphamide	DNA formation	Ļ	Ļ	Ļ
Doxorubicin	DNA formation	Ļ	Ļ	Ļ
Gemcitabine	DNA formation	Ļ	Ļ	Ļ
Actinomycin D	DNA polymerase	Ļ	Ļ	Ļ
Irinotecan	Topoisomerase	Ļ	Ļ	Ļ
Vincristine	Microtubules	Ļ	Ļ	Ļ
NVP-LAQ824	TK synthesis	NC	Ļ	Ļ
PKI-166	Epidermal growth factor receptor tyrosine kinase	NC	Ļ	Ļ
Bevacizumab	Vascular endothelial growth factor	NC	Ļ	Ļ
Rituximab	B lymphocytes	Ļ	NC	Ļ
5-Fluorouracil, capecitabine	TS blockers	Ļ	1	\uparrow , then \downarrow
Methotrexate	Folic acid synthesis	Ļ	1	\uparrow , then ↓

 \downarrow = decreased; NC = no change; \uparrow = increased.

Bading & Shields, JNM 2008.

Early prediction of response in aggressive B-NHL

Nuklearmedizinische Klinik im Klinikum rechts der Isar der Technischen Universität München

ТШ

Early prediction of response in aggressive B-NHL

Nuklearmedizinische Klinik im Klinikum rechts der Isar der Technischen Universität München

ПП

Early prediction of response in aggressive B-NHL

Group 1

Group 2

Prediction of response in DLBCL (70 pts.)

Complete response at FLT-PET

Partial response at FLT-PET

Initial scan

Interim scan (d+7 after R-CHOP)

Imaging residual lymphomas with FLT- and FDG-PET

- 48 pts. with NHL (33) or HD (15)
- Both FLT- and FDG-PET after completion of RCTx
- Correlation of pos./neg. scans to survival

Kasper et al, Leukemia Lymphoma 2007.

Imaging residual lymphomas with FLT- and FDG-PET

Kasper et al, Leukemia Lymphoma 2007.

Oncogene induced senescence

Nuklearmedizinische Klinik im Klinikum rechts der Isar der Technischen Universität München

Nuklearmedizinische Klinik im Klinikum rechts der Isar der Technischen Universität München

CHARITÉ

Summary

- [¹⁸F]FLT reflects (cell cycle-dependent) TK1- activity
- Enables non-invasive assessment of proliferative activity
- Accuracy of [¹⁸F]FDG and [¹⁸F]FLT for staging almost identical but [¹⁸F]FLT superior regarding tumor grading
- anti-proliferative effects of chemotherapy early detectable with [¹⁸F]FLT
- DNA-repair and resistance to treatment
- Therapy induced senescence

USE OF 3'-DEOXY-3'-[¹⁸F]FLUOROTHYMIDINE PET/CT FOR EVALUATING RESPONSE TO CYTOTOXIC CHEMOTHERAPY IN DOGS WITH NON-HODGKIN'S LYMPHOMA

Jessica Lawrence, Matthew Vanderhoek, David Barbee, Robert Jeraj, Daniel B. Tumas, David M. Vail

Klinikum rechts der Isar, München

- M. Schwaiger
- A. Beer
- K. Becker
- R. Beck
- H. Friess
- A.-L. Grosu
- K. Herrmann
- H. Höfler
- U. Keller
- S. Kratzat
- T. Maurer
- M. Molls

- C. Peschel
- R. Rosenberg
- E. J. Rummeny
- R. Senekowitsch
- M. Souvatzoglou
- J. Stollfuß
- U. Treiber
- G. Weirich
 - H. J. Wester
 - H. Wieder
 - S. Ziegler

Wilhelm Sander-Stiftung

national/international

- M. Juweid
- · FI.-J. Machulla
- M. Piert
- C. Schmitt
- L. I. Wiebe
- W. A. Weber

Bundesministerium für Bildung und Forschung

Deutsche Forschungsgemeinschaft

DFG