EANM FDG PET/CT accreditation program

Arturo Chiti, Ronald Boellaard, Sabine Ettinger, Andrea Bauer,
Sigrid Stroobants, Klaus Tatsch, Wim Oyen, Patrick Bourguet

earl@eanm.org
arturo.chiti@cancercenter.humanitas.it
FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0

Ronald Boellaard · Mike J. O’Doherty · Wolfgang A. Weber · Felix M. Mottaghy · Markus N. Lonsdale · Sigrid G. Strobants · Wim J. G. Oyen · Joerg Kotzerke · Otto S. Hoekstra · Jan Pruim · Paul K. Marsden · Klaus Tatsch · Corneline J. Hoekstra · Eric P. Visser · Bertjan Arends · Fred J. Verzijlbergen · Josee M. Zijlstra · Emile F. I. Comans · Adriaan A. Lammertsma · Anne M. Paans · Antoon T. Willemsen · Thomas Beyer · Andreas Bockisch · Cornelia Schaefer-Prokop · Dominique Delbeke · Richard P. Baum · Arturo Chiti · Bernd J. Krause
The EANM guideline for FDG PET and PET/CT provides recommendations for:

- **Minimizing physiological or biological effects** by patient preparation guidelines

- **Procedures to ensure accurate FDG administration**

- **Matching of PET study statistics** (‘image quality’) by prescribing FDG dosage as function of patient weight, type of scanner, acquisition mode and scan duration

- **Matching of image resolution** by specifying image reconstruction settings and providing activity concentration recovery coefficients specifications

- **Standardization of data analysis** by prescribing region of interest strategies and SUV measures

- **Multi-center QC/QA procedures** for PET and PET/CT scanners
Why do we need a guideline for quantitative FDG PET/CT?

Recent (2009) observation on site differences in SUV
-Site 1 & 2 closely followed NL standardized protocol
-Site 3 did not – almost a factor of 2 lower SUV on average
Outcome of quantitative FDG-PET studies using standardized uptake values depend on many biological and technical factors.

*Example of one of the many small factors: effects of different number of OSEM iterations, on SUV

SUVmax = 4.0 5.9 6.4 8.6
SUV 50% = 3.0 4.1 4.6 5.9
Impact of blood glucose level

Glu 200 mg% Glu 79 mg%

Karoline Spaepen-Sigrid Stroobants
Department of Nuclear Medicine
University Hospital Gasthuisberg
Leuven, Belgium
Factors affecting SUV
biological factors – uptake period

Scanner validation programs

- Usually performed as part of imaging site accreditation to check (minimal) PET/CT system performance
- Accreditation organisations have different scanner validation procedures
- There is not a unique phantom adopted by all groups

Need for harmonisation of resolution-dependent quantitation, rather than minimal performance standards
Types of standards / recommendations

• Minimal performance standards:
 – “Focus” on accuracy
 – Lower threshold

• Harmonising performance standards
 – “Focus” on reducing inter-institute, -scanner, -patient variability – ’precision’
 – Lower and upper limits
Multi-center QC and calibration

- Daily QC conform standard procedure of system / manufacturer
- Calibration QC using (cylindrical) phantom (15-30 cm diameter)
- “Adjusted” NEMA NU 2-2001 Image Quality procedure/measurement to measure recovery coefficients as function of sphere size (= ‘effective image resolution’)
- CT-QC cf recommendations of ESR/national law
- Misc. QC (e.g. for scales, alignment etc)
Absolute activity concentration recoveries – NEMA NU 2 2001 IQ Phantom

Right figure: Average (+/- 1 SD) activity concentration recovery coefficients as function of sphere size observed with image quality quality control measurements at 8 different scanners
European accreditation program
EARL, EANM, EORTC

Based on the QC experiments as described in the EANM guideline published in EJNMMI 2010

Manuals, SOPs, online questionnaire completed in August 2010

Training of EARL coordinator (S. Ettinger) September 2010

Pilot program (in collaboration with EORTC) began in October 2010 with 11 sites (12 PET/CT systems)
Standardised software tools for analysis and interpretation of QC experiments were developed:

Calibration QC:
- Automatic VOI placement
- Verification of calibration
- Verification of inter-& intra-plane uniformity

IQ QC
- Recovery coefficients (volume & act.conc.)
- Cold spot recovery using central insert (scatter)
- Verification of calibration using back ground VOI

Now: next phase of program is ongoing
Accreditation within trial EORTC_22071-24071: basic calibration

- 11 sites (12 PET/CT systems)

- 2 sites needed re-calibration and/or adjustment of reconstruction settings
Accreditation: in progress

- In July 2011: 7 sites joined
- In October 2011: 12 sites are joining
- In January 2012: 7 sites / 9 scanners are joining
- Q1 2012: 37 sites with 40 scanners expected
- Program is now open for all interested sites
 - Yearly certification with quarterly QC reports
EANM: next steps

FDG PET and PET/CT: EANM Procedure Guidelines for Tumour PET Imaging Version 2.0

Mutual recognition of different accreditation programs

Standardization of response criteria

Standardization of reporting