$\begin{array}{c} \textbf{PETAL Study} \\ \textbf{Baseline} \\ \textbf{PET} \\ \textbf{ASUV} > 66\% \\ \textbf{PET Negative} \\ \end{array} \begin{array}{c} \textbf{FETAL Study} \\ \textbf{Baseline} \\ \textbf{FET} \\ \textbf$

Problem

- Can we classify Δ SUV-responders without baseline PET?
- lymphoma/reference organ SUV (Interim PET) instead of SUV-Abfalls (ΔSUV ≤ 66%)
- Agreement of Non-Responders using new criterion with gold standard (ΔSUV):

Optimisation of Agreement with △SUV SUV-Threshold for Interim SUV Lymphoma/Liver

	Negative	Positive
	$SUV \leq Threshold$	SUV > Threshold
Responders	112	3
Non-Responders	12	15
Few False-Positives		

Less than half of the Δ SUV Responders identified

Agreement of Non-Responders = Sensitivity ROC Lymphoma/Organ Ratio (Gold Standard = Δ SUV)

Conclusions

- Without baseline PET only every other Non-Responder will be assigned to the escalated treatment arm of the PETAL study
- Results in significantly different escalated patient group
- Outcome results from the PETAL trial not necessarily predictive for this different patient sample
- Further studies are required before dispensing with the baseline PET

SP Müller et al.: J. Nucl. Med. 52, 1867, 2011

Optimization of SUV Threshold and ROC

