Interim PET/CT-based prognostic model for the treatment of diffuse large B cell lymphoma in the post-rituximab era

<u>Deok-Hwan Yang</u>, Byung Hyun Byun, Sun-Seog Kweon, Yee Soo Chae, Sang Woo Lee, Hae Won Kim, Jung Joon Min, Jae-Sook Ahn, Yeo-Kyeoung Kim, Ik-Joo Chung, Sang Kyun Sohn, Hyeoung-Joon Kim, Hee-Seung Bom, and Je-Jung Lee

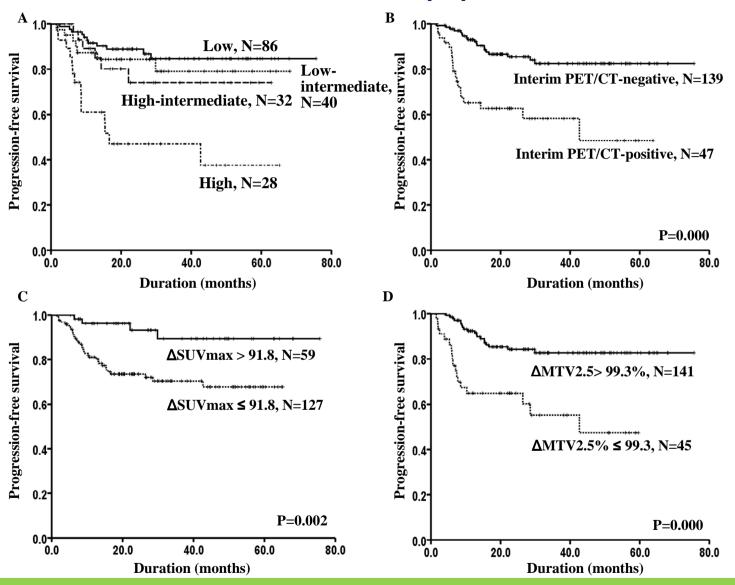
Patients and Methods (I)

- 186 newly diagnosed patients with DLBCL enrolled from Aug. 2004 to Dec. 2010
- PET/CT was performed at diagnosis and after three or four cycles of R-CHOP chemotherapy (Mid-treatment)
- The response of interim PET/CT : based on the combined evaluation with three parameters using visual, SUV-based and MTV-based assessments
- Receiver-operating characteristic (ROC) analysis:
 evaluate the optimal cutoff value of ΔSUVmax or ΔMTV2.5
 for predicting disease progression

Patients and Methods (II)

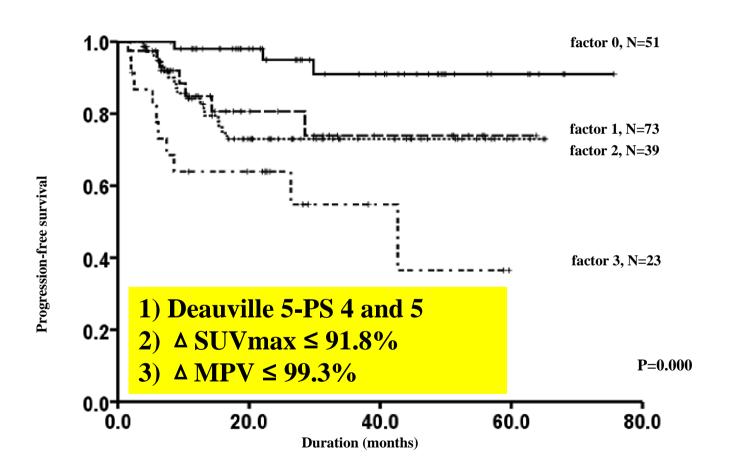
- Five-point scale (5-PS) based on the Deauville criteria
 - Positivity: more than grade 4
- The percentage of SUVmax reduction (△SUVmax) between initial and interim PET/CT

$$\Delta SUVmax$$
 (%) =
$$\frac{[SUVmax (initial) - SUVmax (interim)]}{SUVmax (initial)} X 100$$

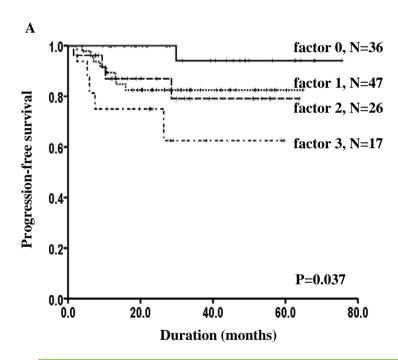

- The percentage of metabolic tumor volume reduction (△MTV2.5) between initial and interim PET
 - To define the exact tumor margins around the target lesions
 with SUV cutoff value of 2.5 → automatically calculated by software
 - The MTV2.5 reduction rate (ΔMTV2.5) was calculated as same formula as SUVmax reduction rate.

Results (I)

Patient Characteristics


Parameters	N. of patients (%)
Age, median, years	61 (range: 17 – 83)
Age > 60	103 (55.4)
Male / female	106 / 80
Performance status 2-3	29 (15.6)
LDH, high	86 (46.2)
Stage	
I – II	95 (51.1)
III – IV	91 (48.9)
Bulky	19 (10.2)
Bone marrow involvement	10 (5.4)
B symptom	28 (15.1)
International Prognostic Index	
Low	86 (46.2)
Low-intermediate	40 (21.5)
High-intermediate	32 (17.2)
High	28 (15.1)
Number of R-CHOP, median	6 (range: 3 - 8)
Involved field radiation therapy	47 (25.3)
Interim PET/CT by visual assessment	
positive	47 (25.3)
negative	139 (74.7)
Response to R-CHOP	
CR / PR	153 (82.3) / 26 (14.0)
SD / PD	1 (0.5) / 6 (3.2)
Relapse	38 (20.4)

Results (II)



Kaplan-Meier estimates of PFS in (A) all patients with DLBCL according to IPI risk and classified according to (B) positivity by the Deauville five-point scale, (C) the Δ SUVmax with the optimal cutoff value of 91.8% and (D) the Δ MTV2.5 with the optimal cutoff value of 99.3% in interim PET/CT.

Results (III) Prognostic model based on interime PET/CT

Results (IV)

Kaplan-Meier estimates of PFS by IPI, according to the combined evaluation of visual, SUV-based and MTV-based assessment in the low/low-intermediate IPI risk group (N=126) (A) and in the high/high-intermediate IPI risk group (N=60) (B).

Summary

- Positivity on the Deauville 5-PS, the optimal cutoff value of ΔSUVmax or the optimal cutoff value of ΔMTV2.5 could each predict disease progression.
- When combining these three parameters from PET/CT, the model can have strong predictive power for prognosis.

Deok-Hwan Yang : drydh1685@hotmail.com