

Unresolved Issues of Quantitative Analysis

Stefan Müller, Hong Van Ngo Department of Nuclear Medicine

Ulrich Dührsen, Andreas Hüttmann Department of Hematology

University Hospital Essen University of Duisburg-Essen Germany

petal@uk-essen.de

Unresolved Issues of SUV Quantitation

- Which factors of ΔSUV assessment are really limiting?
- Can we easily correct SUVs when they are obviously wrong compared to an internal reference organ?

Standardized Uptake Value - SUV

$$SUV = \frac{PET-Tissue Concentration [MBq / kg]}{Injected Activity [MBq] / Body Weight[kg]}$$

- Requires absolute scanner calibration
 - Normalization, cross-calibration dose calibrator
 - Attenuation correction
 - Scatter correction

Central QC for PETAL Study

- 1/3 fulfill all quantitative requirements
- 1/3 initially not acceptable
- 1/3 minor issues
- Problems can be easily fixed
- Support from central QC readily accepted by centers
- Centers certified for previous multicenter studies still adequate
- External certification has lasting effect

Factors affecting FDG SUV

- Physics
 - Corrections (attenuation, scatter, detector response, ...)
 - Reconstruction (Filter, Regularisation, ...)
 - Resolution: Recovery and Spillover
 - Image noise characteristics
 - Region-of-Interest (ROI)
 - Form, size, shape, and position of ROI
 - Form, size, shape, and position of object
 - Reproducibility of ROI segmentation

Positron Emission Tor raphy Guided Thereby of Agreeme Non-Hodgkin's Lymphomas Statistical Reconstruction Regularization and Convergence (20 iter./ 32

Phantom

E-COSEM

Hsiao Phys Med Biol 49, 2145, 200

PET Recovery Correction

Recovery and Spillover

Quantitation Algorithms

Tylski et al. JNM 51,268,201

Improved Quantitation Algorithms

- Reference values, e.g. 2/3 reduction of ΔSUV or absolute thresholds, were established with simple quantitation algorithms
- Do they need to be adapted to more sophisticated quantitation algorithms

Factors affecting FDG SUV

- Biology
 - Time between injection and PET scan
 - Blood glucose concentration
 - Distribution volume of FDG (body composition)
 - FDG Elimination (kidneys)

Einfluss Intervall Injektion - Scan

Lowe, JNM 1995

Influence of Time Point for Interim-PET

Staging PET

Interim PET 12 d post cycle 2 Interim PET 19 d post cycle 2

Optimal time point
Standardization (PETAL Resp.: 19.5±4.2 d, Non-Resp.: 19.5±4.3 d)

Blood Glucose Concentration

FDG Uptake in NSCLC

SUV	SUV _{gl} = [Glc]/100*SUV	MRGI _{Patlak-Plot}
-----	-----------------------------------	-----------------------------

Insulin sensitivity different in various tissues

Langen J Nucl Med 34, 355, 1993

Distribution Volume

No major change between Staging and Interim PET

Sugawara Radiology 213, 521, 1999

Factors affecting FDG SUV

- Physics
 - PET Scanner Calibration
 - Corrections (attenuation, scatter, detector response, ...)
 - Reconstruction (Filter, Regularisation, ...)
 - Resolution: Recovery and Spillover
 - Image noise characteristics
 - Region-of-Interest (ROI)
 - Form, size, shape, and position of ROI
 - Form, size, shape, and position of object
 - Reproduceability of ROI segmentation
- Biology
 - Time between injection and PET scan
 - Blood glucose concentration
 - Distribution volume of FDG (body composition)
 - FDG Elimination (kidneys)

Standardization required

Standardization of Interim-PET

- Eliminates inter- and intra-observer variability
 - Important for multicentric trials
 - No reference reading necessary
- Standardization feasible
 - Similar to clinical routine PET protocol
 - Similar efforts should be undertaken anyway for visual evaluation
- Feedback from trial improves discipline

Unresolved Issues of SUV Quantitation

- Which factors of ΔSUV assessment are really limiting?
 - Standardization prerequisite for reliabe quantitation
- Can we easily correct SUVs when they are obviously wrong compared to an internal reference organ?

– no

FDG-SUV in Reference Organs under R-CHOP Chemotherapie Results from the PETAL-Study in Non-Hodgkin Lymphoma

- 145 patients (Universitätsklinikum Essen) with aggressive NHL (PETAL Study)
- FDG-PET/CT baseline and interim (median 19 d after 2. cyles R-CHOP)
- Mean SUV in spherical 2 cm diameter VOI in mediastinal bloodpool, liver and spleen
- Excluded patients with lymphoma manifestations in reference organs

FDG-SUV in Reference Organs under R-CHOP Chemotherapie Results from the PETAL-Study in Non-Hodgkin Lymphoma

- 145 patients (Universitätsklinikum Essen) with aggressive NHL (PETAL Study)
- FDG-PET/CT baseline and interim (median 19 d after 2. cyles R-CHOP)
- Mean SUV in spherical 2 cm diameter VOI in mediastinal bloodpool, liver and spleen
- Excluded patients with lymphoma manifestations in reference organs

- SUVs in mediastinal bloodpool and liver are stable
- SUV decrease in the spleen is significant but not relevant

∆SUV vs. Interim SUV

Unresolved Issues of SUV Quantitation

- Which factors of ΔSUV assessment are really limiting?
 - Standardization prerequisite for reliabe quantitation
- Can we easily correct SUVs when they are obviously wrong compared to an internal reference organ?

– no