4th INTERNATIONAL WORKSHOP ON INTERIM-PET IN LYMPHOMA Palais de l'Europe, Menton

Oct 4-5, 2012

international workshop for PET in lymphoma staging and restaging

Lale Kostakoglu Department of Radiology Mount Sinai Medical Center, New York, USA

Imaging Task Force Recommendations for Staging

 FDG PET-CT should be used for staging in routine clinical practice and in clinical trials (category 1)

- FDG PET-CT can be used to
 - image/stage most subtypes of lymphoma and
 - target biopsy
- FDG PET-CT is not routinely recommended in lymphomas with low FDG avidity e.g. CLL/SLL, extranodal MZL and some cutaneous lymphomas (category 1)

 PET-CT with ceCT is desirable for staging patients likely to undergo radiotherapy ideally within a single scanning session

- a two stage approach with unenhanced PET-CT followed by regional ceCT for equivocal lesions may be preferred taking into account age, disease type, stage (*category 2*)

prognostic indices increasingly favored over staging alone but staging is an integral part of the established prognostic scoring systems in lymphoma (IPI, IPS) Staging remains fundamental to risk-stratify pts and select the appropriate treatment strategy

- Ann Arbor staging (1971), most widely used system, evolved to incorporate CT (Cotswolds, 1989) into clinical algorithm although CT has significant flaws
- Contrary to HL, NHL pts present with advanced stage and END, AA system is only powerful when used with other prognostic factors (IPI) Shipp M, N Engl J Med 1993;329:987
- FDG-PET proved to be a more accurate staging tool than CT; max joint sensitivity and specificity of 88%

Radford, J Clin Oncol 1988;6, Lister, J Clin Oncol, 1989:7:1630, Rosenberg. Cancer Treat Rep, 1977;61:1023, Nyman, Acta Radiol, 1996:37, Menzel, Acta Oncol 2002;41, Naumann, Br J Cancer 2004;90, Partridge, Ann Oncol 2000;11, Freudenberg, EJNM 2004;31., Isasi, Cancer, 2005;104, Hutchings, Haematologica, 2006;91, Schaefer, Radiology 2004;232, Naumann, Br J Cancer, 2004;90, Tatsumi, Radiology, 2005; 237:

- Discordance btwn PET and CT findings occurs in up to 30% of pts at staging, in favor of PET/CT imaging
- FDG PET leads to upstaging in 20-30% of pts, but stage migration from early to advanced stage disease is rare

Study	No. of Patients With HL	No. of Patients With NHL	Upstage (%)	Downstage (%)	Change in Therapy (%)
Bangerter ²⁰	44		12	2	14
Partridge ²³	44		40.9	< 10	25
Buchman ¹⁶	27	25	8	0	8
Jerusalem ²¹	33		1	1	1
Weihrauch ²⁴	22		18	0	5
Wirth ²⁵	19	31	14	0	18
Munker ²⁶	73		29	3	< 1
Raanani ²⁷			32	15	45
Hutchings ¹⁸	99		17	5	7
Rigacci ²²	186		14	1	7
Pelosi ¹⁹	30		10		7
Pelosi ¹⁹		35	11.4		9
			Bruce C	, J Clin Oncol, a	2011;29:1844

Naumann, Br J Cancer 2004;90, Isasi, Cancer, 2005;104, Hutchings, Haematologica, 2006;91, Weihrauch, Ann Hematol, 2002;81, Jerusalem, Haematologica 2001;86 Picardi, Ann Oncol.2011; 22

FDG PET/CT Staging in Lymphoma

 Likelihood of a change in treatment ~15%, with no data supporting improvement in pt outcome

- widespread use of systemic chemo mitigates the need for exact definition of disease extent
- conversely, recent trend for individualized rx; deescalation and limit RT to involved LNs requires more precise info on the anatomic extent of disease

•PET/CT as the most sensitive staging modality is of particular value for those pts with apparently early stage disease

•Staging PET/CT essential for evaluation of subsequent therapy response

Hutchings M, Haematologica 2006;91:482, Pelosi E, Radiol Med 2008;113:578, Jerusalem G, Haematologica 2001;86:266, Rigacci L, Ann Hematol 2007;86:897, Weihrauch MR, Ann Hematol 2002;81:20, Wirth A, Am J Med 2002;112:262, Munker R, Ann Oncol 2004;15: 1699, Raanani P, Ann Oncol 2006;17, Kabickova E, EJNMMI 2006;33, Schaefer NG, Radiology. 2004; 232, Tatsumi M Radiology 2005; 237, Partridge S. Ann Oncol 2000;11

It is recommended that PET-CT be used for staging in routine clinical practice and in clinical trials (*category 1*)

FDG avidity among lymphomas

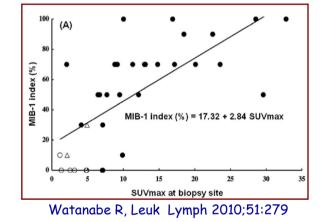
- DLBCL, HL and FL are invariably FDG avid
- Less common aggressive lymphomas; Burkitts, NK-T cell, lymphoblastic, MCL, anaplastic large T-cell are FDG avid
- Variable and/or low grade FDG avidity,
 - CLL/SLL, extranodal marginal zone lymphoma (MZL)
 - angioimmunoblastic T-cell (AITL), cutaneous lymphomas (PTCL)

Tsukamoto, Cancer 2007;110, Le Dortz, JNMMI, 2010;37:, Wöhrer, Ann Oncol 2006;17, Perry, Eur J Haematol 2007;79, Kako, Ann Oncol. 2007;18:, Elstrom, Blood. 2003;101, Brepoels, Leuk Lymphoma 2008;49

Histology	Weiler-Sagie ($n = 766$)	Tsukamoto (6) ($n = 255$)	Elstrom (5) $(n = 172)$	Other publications
Hodgkin disease	100% (n = 233)	97% (n = 23)	98% (n = 47)	Rigacci (24) 100% (n = 186)
Burkitt lymphoma	100% (n = 18)	100% (n = 5)	100% (n = 1)	
Mantle cell lymphoma	100% (n = 14)	100% (n = 9)	100% (n = 7)	Gill (25) 100% ($n = 9$)
Anaplastic large T-cell lymphoma	100% (n = 14)	100% (n = 5)	100% (n = 2)	
Marginal zone lymphoma, nodal	100% (n = 8)			Hoffmann (18) 83% ($n = 6$)
Lymphoblastic lymphoma	100% (n = 6)			
Angioimmunoblastic T-cell lymphoma	100% (n = 4)	100% (n = 5)		Kako (8) 100% (n = 4)
Natural killer/T-cell lymphoma	100% (<i>n</i> = 2)	100% (n = 7)	100% (n = 1)	Karantanis (26) 100% (n = 10), Kako (8) 100% (n = 8)
Diffuse large B-cell lymphoma	97% (n = 222)	97% (n = 81)	100% (n = 51)	Lin (27) 100% (n = 92)
Follicular lymphoma	95% (n = 140)	91% (n = 44)	98% (n = 42)	Karam (9) 100% (n = 17)
Peripheral T-cell lymphoma	90% (n = 10)	98% (n = 9)	40% (n = 5)	Bishu (20) 86% (n = 24), Kako (8) 91% (n = 11)
Small lymphocytic lymphoma	83% (n = 29)	50% (n = 4)	100% (n = 1)	Karam (9) 47% (n = 15)
Enteropathy-type T-cell lymphoma	67% (<i>n</i> = 3)			Hoffmann (23) 100% ($n = 4$), Hadithi (22) 100% ($n = 8$)
Marginal zone lymphoma, unspecified			67% (n = 12)	
Marginal zone lymphoma, splenic	67% (n = 3)	53% (n = 10)		
MALT marginal zone lymphoma	54% (<i>n</i> = 50)	82% (n = 52)		Perry (10) 55% (n = 33), Radan (19) 71% (n = 24), Alinari (16) 81% (n = 26), Bea (17) 81% (n = 42)
Lymphomatoid papulosis	50% (n = 2)			
Primary cutaneous anaplastic large T-cell lymphoma	40% (<i>n</i> = 5)			Kako (8) 60% (n = 5)
Mycosis fungoides			100% (n = 1)	
Subcutaneous paniculitis-like T-cell lymphoma		71% (n = 1)		
Cutaneous B-cell lymphoma			0% (n = 2)	

Weiler-Sagie M, J Nucl Med 2010;51:25

•PET/CT should be the imaging modality of choice for FDG-avid lymphomas including HL, DLBCL, Burkitt, and other aggressive NHLs, FL


•For those lymphoma subtypes including CLL/SLL, MZL and MCL staging with FDG PET should be decided in the context of clinical necessity

Intensity of FDG uptake is higher in aggressive than indolent lymphomas: transformation

 SUVs exceeding 10 yields a 81% specificity for the identification of an aggressive behavior

Schoder H, J Clin Oncol 2005; 23:4643, Noy A, Ann Oncol. 2009;20:508

Positive correlation observed btw
SUVmax at the bx site and Ki-67
proliferation index (MIB-1) in NHL
(r =0.69, p < 0.001)

 Clinical suspicion for transformation should prompt a FDG PET/CT to guide biopsies to sites with highest FDG avidity to dx transformation and timely institute proper treatment

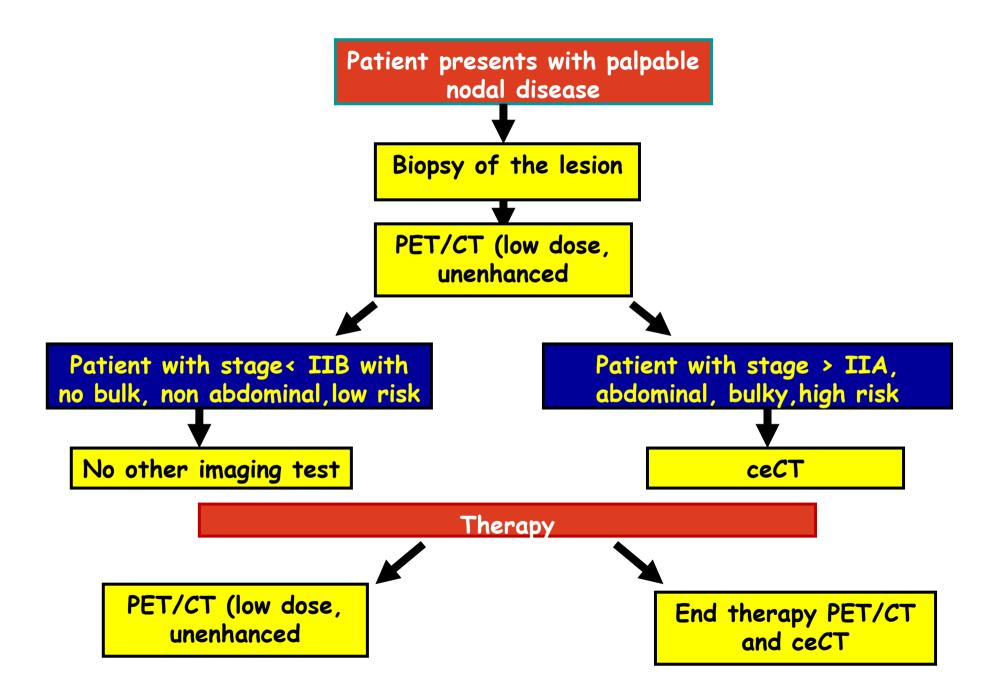
FDG PET/CT can be used to image most subtypes of lymphomas and to target biopsy (*category 1*).

Role of Contrast-Enhanced CT

- Whether or not to perform PET/ceCT vs PET/ldCT is controversial
- Better sensitivity and specificity reported for FDG PET vs ceCT in detection of nodal and extranodal HL
- Addition of ceCT to PET/ldCT shown no significant difference in lesion detection rate, except for occasional upstaging
- Additional ceCT changed management in <10% of pts while PET/IdCT resulted in a change in almost 50% of HL pts compared with CECT alone

Hutchings, Haematologica 2006;91, Schaefer, Radiology. 2004;232, Tatsumi Radiology 2005; 237, Partridge. Ann Oncol 2000;11,, Raanani, Ann Oncol 2006;17, Elstrom, Ann Oncol 2008;19, Rodríguez-Vigil, J Nucl Med 2006;47, Pinilla, Q J Nucl Med Mol Imaging 2011;55

Role of Contrast-Enhanced CT


Cumulative data suggest a marginal benefit with the addition of ceCT to PET/CT but ceCT can resolve indeterminate findings and lead to occasional upstaging

- ceCT or combined PET-ceCT offers adv for,
 - Size measurements for pts who would have a non-CR
 - Abdominal/pelvic lymphoma, END
 - RT planning
- carries an additional radiation burden especially in young HL pts whose cure rates are high

Role of Contrast-Enhanced CT

PET-CT with ceCT is desirable for staging of pts likely to undergo RT ideally within a single scanning session (*category 2*)

A two stage approach using unenhanced PET-CT followed by regional ceCT for equivocal lesions may be preferred taking into account patient age, disease type, bulk and clinical stage

