Potential applications of FDG-PET in Mantle Cell Lymphoma

Dr Bodet-Milin Caroline And Prof. Le Gouill Steven

Medical University of Nantes France

NHLs

Küppers R.Nature reviews cancer 2005 p251

FISH

Immunochemestry Overexpression of cycline D1 (CCND1) BCL1/CCND1+

Adapted from Malumbres et al. Nature reviews cancer 2009 p153

CHALLENGES IN MCL DURING THE LAST DECADE:

• How to improve response rates ?

How to reach long term CR ?

MCL younger: Randomization and Treatment

Adapted from O Hermine ASH 2010 Abstract 110

MCL Younger: Duration of CR after ASCT

First RCT for MCL Elderly 8 countries, n = 560 (Jan 2004-Oct 2010)

Newly diagnosed, >60-65 yr; performance 0-2, Stages II-IV, central PA review

8 x R-CHOP

CR, CRu, PR

6 x R-FC

IFN-α maintenance (3 x 3 M IU/week) or Peg-IFN (1ug/kg week)

Rituximab maintenance (all 2 months)

KLUIN-NELEMANS ET AL NEJM

MCL Elderly: overall survival related to induction regimen

After R-CHOP

After R-FC

p=0.055 for interaction of induction and maintenance

CHALLENGES OF THE LAST DECADES IN MCL:

- How to improve response rates ?
 - By the Use of high-dose aracytine upfront for young patients
- How to reach long term CR ?
 - By the use of Rituximab maintenance for elderly patients
 - WHAT NEXT ? New molecules: velcade, temsirolimus, lenalidomide, GA-101, BTK inhibitors ..

NEW CHALLENGES IN MCL: How to identify high- or low-risk patients in order to built a risk-tailored therapy?

• Biomarkers at time of diagnosis (MIPI, Ki67, cytogenetic abnormalities, epigenetic dysregulations ...)

How to use MRD ?

• How to use FDG-PET?

STATE OF ART

Table 1. Recommended Timing of PET (PET/CT) Scans in Lymphoma Clinical Trials					
Histology	Pretreatment	Mid-Treatment	Response Assessment	Post- Treatment Surveillance	
Routinely FDG avid					
DLBCL	Yes*	Clinical trial	Yes	No	
HL	Yes*	Clinical trial	Yes	No	
Follicular NHI	Not	Clinical trial	Not	No	
MCL	Not	Clinical trial	Not	No	
Variably FDG avid					
Other aggressive NHLs	Not	Clinical trial	Not‡	No	
Other indolent NHLs	Not	Clinical trial	Not‡	No	

Abbreviations: PET, positron emission tomography; CT, computed tomography; FDG, [¹⁸F]fluorodeoxyglucose; DLBCL, diffuse large B-cell lymphoma; HL, Hodgkin's lymphoma; NHL, non-Hodgkin's lymphoma; MCL, mantle-cell lymphoma; ORR, overall response rate; CR, complete remission. *Recommended but not required pretreatment. †Recommended only if ORR/CR is a primary study end point. ‡Recommended only if PET is positive pretreatment.

However, FDG-PET is moving forward in MCL:

- STEP 1: FDG-PET at diagnosis ?
- STEP 2: FDG-PET for response assessment at end of therapy ?
- STEP 3: FDG-PET for mid-treatment response assessment ?

STEP 1

STEP 1: FDG-PET at diagnosis

Study	N	Sensitivity	SUVmax range
Elstrom Blood 2003	7	100%	Not performed
Brepoels Leukemia & lymphoma 2008	37	100%	~1.8-19
Karam Nuclear medicine communications 2009	81	100%	< ou = 5: n=20
Gill Clinical Lymphoma & Myeloma 2008	28	100%	Not performed
Schaffel Blood (ASH Annual Meeting Abstracts) 2009	75	95%	Not performed
<i>Bodet-milin</i> Eur journal of nuclear medicine 2010	44	100%	1.7-18.8
Alavi Clinical Lymphoma & Myeloma 2011	19	100%	Not performed
<i>Hosein</i> Am journal of hematology 2011	34	94%	1.6-14
Mato Cancer 2012	53	92%	2.5-36.7

- High sensitivity for nodes and spleen.
- Insufficient sensitivity for bone marrow and gastrointestinal involvement.
- Heterogeneous Suvmax

Bodet-milin et al (Eur journal of nuclear medicine 2010)

STEP 1

Prognosis Index?

Prognosis index

Bodet-milin et al (Eur journal of nuclear medicine 2010)

• STEP 1: FDG-PET at diagnosis OK

- STEP 2: FDG-PET for response assessment at end of therapy
- STEP 3: FDG-PET for mid-treatment response assessment

Steps 2 : Response assessment by PET

Study	N	Treatment	Interim PETevaluation	End treatment PET evaluation
Brepoels Leukemia & lymphoma 2008	37 Frontline	Heterogeneous	Eortc + IHP criteria	Eortc + IHP criteria
Schaffel Blood (ASH Annual Meeting Abstracts) 2009	75 Frontline	4 RCHOP 14 2-3 RICE + ASCT	IHP criteria	Not performed
<i>Bodet-milin</i> Eur journal of nuclear medicine 2010	44 Frontline	Heterogeneous	Not performed	IHP criteria
<i>Hosein</i> Am journal of hematology 2011	34 Frontline	Heterogeneous	IHP criteria	IHP criteria
Mato Cancer 2012	53 Frontline	R-HyperCVAD	IHP criteria	IHP criteria

STEP 2: FDG-PET for response assessment at end of therapy

Bodet-Milin et al. Eur journal of nuclear medicine 2010

Mato et al. Cancer 2012

• STEP 1: FDG-PET at diagnosis OK

- STEP 2: FDG-PET for response assessment at end of therapy Probably yes but need to be validated
- STEP 3: FDG-PET for mid-treatment response assessment

STEP 3: FDG-PET for mid-treatment

response assessment

Study	N	Treatment	Interim PETevaluation	End treatment PET evaluation
Brepoels Leukemia & lymphoma 2008	37 Frontline	Heterogeneous	Eortc + IHP criteria	Eortc + IHP criteria
Schaffel Blood (ASH Annual Meeting Abstracts) 2009	75 Frontline	4 RCHOP 14 2-3 RICE + ASCT	IHP criteria	Not performed
<i>Hosein</i> Am journal of hematology 2011	34 Frontline	Heterogeneous	IHP criteria	IHP criteria
Mato Cancer 2012	53 Frontline	R-HyperCVAD	IHP criteria	IHP criteria

- In all studies, PET seems to be able to identify non responders after 2 or 3 cycles of chemotherapy, especially in patients considered as responders on CT
- <u>But</u> Negative interim PET is associated with better PFS (84% vs 40%) and OS (94%vs 70%) in only ¼ study (Schaffel et al.)

However, Art is moving forward !

- STEP 1: FDG-PET at diagnosis OK
- STEP 2: FDG-PET for response assessment at end of therapy Probably but need to be validated
- STEP 3: FDG-PET for mid-treatment response assessment Uncertain and need prospective studies

THANKS / MERCI

Dr Bodet-Milin Caroline And Prof. Le Gouill Steven

Medical University of Nantes France

