International Validation Study of Prognostic role and Interpretation Criteria for Interim-PET Scan in ABVD-treated, Advanced Stage Hodgkin Lymphoma

Gallamini A, Barrington S, Biggi A, Chauvie S, Kostakoglu L, Gregianin M, Meignan M, Mikhaeel G, Specht L, Zaucha JM, Seymour J, Hofman M, Rigacci L, Pulsoni A, Coleman M, Dann EJ, Trentin L, Casasnovas O, Rusconi C, Brice P, Bolis S, Viviani S, Salvi F, Luminari S, Roberto E, Cerello P and Hutchings M. Was the predictive value of iPET confirmed by IVS study with sufficiently robust data in HL?

## Why do we need IVS ?

...interim-PET scan has been proven the most powerful tool to predict treatment outcome in ABVD-treated HL. Despite repeated recommendations (Connors 2011, Gallamini 2012) interim PET is continuously performed early during therapy to guide treatment outside clinical trials. In 2009 in Deauville a retrospective multicenter clinical study was proposed to confirm the predictive role of interim PET and to "validate" retrospectively the 5-PS criteria

## What should be validated ?



Gallamini A et al. J Clin Oncol 2007; 25:3746-52.

#### DEAUVILLE RULES

- □ Score 1 no uptake
- □ Score 2 uptake ≤ mediastinum
- □ Score 3 uptake > mediastinum but  $\leq$  liver
- □ Score 4: moderately ↑uptake > liver
- □ Score 5 markedly ↑uptake > liver and/or new sites of disease

# IVS endpoints

Primary endpoint •To confirm the overall accuracy and Predictive Value of interim-PET scan in terms of 2-year failure-free survival

# Secondary endpoints

 Propose easy reproducible international rules for early PET interpretation during ABVD chemotherapy for Hodgkin lymphoma.

 Concordance rate of reviewers among he members of Central review panel.

## Inclusion criteria

- □ Advanced-stage (IIB-IVB) or poor-prognosis stage IIA\* HL.
- □ Therapy: ABVD x 6 cycles ± consolidation RT or ABVD x 4 + IFRT
- □ Staging at baseline and after 2 ABVD with PET-CT(PET-0 and PET-2)
- □ No treatment change depending on interim-PET results.
- Patients treated with 2-nd line chemotherapy for progressive /resistant lymphoma during ABVD chemotherapy eligible only with clinical and/or radiological evidence of disease progression.
- PET-0 and PET-2 performed in the same PET center
- Minimum follow-up of one year after treatment completion

#### $\geq$ 3 nodal sites involved, bulky lesion, ESR > 40 mmHg.

# Study population

400 consecutive patients affected by HL from 17 participating centres worldwide diagnosed between January 2002 and December 2009 were considered eligible and retrospectively enrolled, provided they met the inclusion criteria

#### 17 participating centers 261 p. enrolled from 05.11.2001 to 23.11.2009)



# Patient selection

#### 400 patients enrolled



336 patients with PET/CT scans uploaded & quality controlled



260 patients with PET/CT scans approved & sent to review

| Reason for PE | T scan exclusion |
|---------------|------------------|
|---------------|------------------|

| •Absence of CT images                  | 22 |
|----------------------------------------|----|
| •Absence of baseline PET               | 25 |
| •Absence of interim PET                | 1  |
| •CT slices missing                     | 3  |
| •PET slices missing                    | 10 |
| <ul> <li>Poor quality scans</li> </ul> |    |
| <ul> <li>Miscellaneous</li> </ul>      | 9  |

#### • **REVIEWERS**

- •Sally Barrington London UK
- •Alberto Biggi- Cuneo I
- •Michele Gregianin Padova I
- •Martin Hutchings- Copenhagen DK
- •Lale Kostakoglu New York USA
- •Michel Meignan Paris F



Review results acquired and statistical analysed



## Demographics (N= 260).

|                                                   |        | Stage IIA<br>patients unf.* | Stage IIB<br>patients | Stage III<br>patients | Stage IV<br>patients | All patients |
|---------------------------------------------------|--------|-----------------------------|-----------------------|-----------------------|----------------------|--------------|
| No.                                               |        | 53                          | 60                    | 85                    | 62                   | 260          |
| Gender                                            | male   | 23 (43.39%)                 | 32 (53.33%)           | 48 (56%)              | 36 (58%)             | 139 (53%)    |
|                                                   | female | 30 (56.60%)                 | 28 (46.67%)           | 37 (44%)              | 26 (42%)             | 121 (47%)    |
| Follow-up                                         | median | 35.5                        | 40.4                  | 34.7                  | 38.4                 | 37.0         |
|                                                   | range  | 7-73.7                      | 1.8-105.3             | 3.2-109.9             | 2.5-78.5             | 1.8-109.9    |
| B-symptoms                                        |        | 0(0%)                       | 60 (100%)             | 52 (61%)              | 41 (66%)             | 152 (58.4%)  |
| Extranodal disease                                |        | 2 (3.7%)                    | 8 (13%)               | 18 (21%)              | 52 (84%)             | 80 (31%)     |
| Bulky disease                                     |        | 17 (32%)                    | 26 (43%)              | 21 (25%)              | 15 (24%)             | 79 (30%)     |
| IPS                                               | 0      |                             |                       | 9 (1)                 | 0 (0)                | 9 (6%)       |
| In parentheses %<br>of PET-2 positive<br>patients | 1      |                             |                       | 29 (3)                | 10 (0)               | 39 (26%)     |
|                                                   | 2      |                             |                       | 26 (3)                | 19 (4)               | 45 (31%)     |
|                                                   | 3      |                             |                       | 13 (1)                | 16 (6)               | 29 (20%)     |
|                                                   | 4      |                             |                       | 6 (2)                 | 11 (5)               | 17 (11%)     |
|                                                   | ≥5     |                             |                       | 2 (1)                 | 6 (1)                | 8 (5%)       |
| Radiotherapy                                      |        | 36 (67.9%)                  | 39 (65%)              | 15 (17.6%)            | (10 (16.1%)          | 100 (38.5%)  |

 $\geq$  3 nodal sites involved, bulky lesion, ESR > 40 mmHg.

## First-line treatment

Treatment consisted of ABVD x 4 plus IFRT for 32 early unfavorable patients or ABVD x 6  $\pm$  consolidation RT for 20 early unfavorable and for 208 advanced-stage patients. Consolidation RT was delivered to the site of initial bulky disease in 68 patients. 212 (82.7%) achieved CR and 3 PR; all three converted to CR later. Forty-five (17.3%) had treatment failure: 31 disease progression and 14 disease relapse. Median follow-up was 37.6 months (2-110)

# 2nd-line chemotherapy

#### Median follow-up 37.6 months

PET2 PET2+

**45** 

# 45/260patients were(17.3%)PET2 positive

- 33/45 (65%) of them (TP) had a treatment failure
  - 29 had treatment intensification for disease progression
  - 4 had a relapse

215/260 (82.7%)

#### patients were PET2 negative

- 12 (5%) of them (FN) had a treatment failure
  - 7 had treatment intensification for disease progression
  - 5 had a relapse

44 patients changed therapy:

215

- 39 after a median of 7.86 months (range 2-34) at clinical progression
- 1 after 2 months due to PET findings in isolation
- 3 after 3 months for clinical evidence of disease progression
- 1 after 4 months due to PET findings in isolation.

### 2-nd line treatment outcome (N=45: 17%)

PET-2 positive cohort (n= 33)
22 patients attained CR
3 patients progressed
4 died for disease progression
PET-2 negative cohort (N= 12)
10 patients reached CR
1 patient progressed
1 died for disease progression.

Treatment administered DHAP (4), IGEV (4), Unknown (7) HDS (199) followed by ASCT in 25 pts.

## 1-st line Tx outcome according to PET-2 and IPS



## Predictive value on Tx outcome

| Parameter                 | IVS                 | JCO  |
|---------------------------|---------------------|------|
| True Positive             | 33                  | 44   |
| True Negative             | 203                 | 199  |
| False Positive            | 12                  | 6    |
| False Negative            | 12                  | 11   |
| Sensitivity               | 0.732 [0.678,0.785] | 0.81 |
| Specificity               | 0.927 [0.896,0.959] | 0.97 |
| Positive Predictive Value | 0.652 [0.594,0.710] | 0.93 |
| Negative Predictive Value | 0.949 [0.922,0.976] | 0.92 |

2 yrs PFS





**Biggi A. : SNM 2012** 

PPV 93% - NPV 92%. SE 81% ; SP 97% ; ACC 92%

Gallamini A.: J Clin Oncol 2007; 25, 2235-2248

PPV 73% - NPV 94% SE 73% ; SP 94%; ACC 91%

## 3-y PFS according to PET-2 and IPS in stage III\_IV B and all patients



Stage IIIA-IV B (N =147)

All patients (N = 260)

### Univariate & Multivariate analysis for 3-Y PFS

| Univariate analysis        | p Value | Sig.  | 95,0% CI for Exp(B) |           |
|----------------------------|---------|-------|---------------------|-----------|
|                            |         |       | Lower               | Upper     |
| Bulky                      | <0.01   | 0,048 | 1,000               | 1,710     |
| Lymphocyte                 | <0.01   | 0,007 | 1,000               | 1,000     |
| Albumin                    | <0.01   | 0,000 | 0,950               | 0,970     |
| WBC                        | <0.01   | 0,000 | 1,000               | 1,000     |
| IPS 0-2 vs.≥ 3             | <0.01   | 800,0 | 0,790               | 0,970     |
| CR vs no CR                | <0.01   | 0,000 | 4,070               | 7,650     |
| LDH                        | <0.01   | 0,031 | 0,999               | 1,000     |
| BM                         | <0.01   | 0,000 | 1,090               | 1,330     |
| PET-2                      | <0.01   | 0,000 | 1,630               | 3,110     |
| Multivariate analysis      | p Value | Sig.  | 95,0% CI fo         | or Exp(B) |
| (COX)                      |         |       | Lower               | Upper     |
| Bone Marrow<br>Involvement | <0.01   | 0,001 | 1,107               | 1,513     |
| PET-2                      | <0.01   | 0,000 | 3,136               | 7,917     |

# What is the lesson from a retrospective multicenter clinical trial ?

## Standardization is mandatory !

# 3-y PFS according to local or blindend independent central review



#### Local centre interpretation

BICR

# Uptake time



101/260 patients (38%)

## Conclusions

 Predictive role of iPET was confirmed in multicenter retrospective study: 3-Y PFS for iPET-neg and iPET-pos. of 95% and 28%, respectively, •IPS prognostic role was overridden by iPET both in "truly advanced" and in all patient series •The PPV was 73% in IVS and 93% in Italian Danish study. The lower value probably is accounted by the different methodology or review process (blinded vs. consensus) •Deauville 5-PS turned out robust enough as interpretation key (Cohen k 0.69-0.84: good-very good; Krippendorf alpha 0.76 : excellent)

## Acknowledgements

- G. Mikhaeel, Medical Oncology, Guy & St. Thomas Hospital London (UK)
- E. Dann. Hematology Dept. Rambam Medical Center, Haifa (IL)
- M. Coleman Hematology Dept. Cornell University New York (USA)
- J. Seymour Hematology Dept. Peter Mc Callum Cancer center, Melbourne (A)
- O. Casasnovas Hematologie Clinique, Hopital Le Bocage Dijon (F)
- M Hutchings, Onco-Hematology Dept. RigHospitalet, Copenhagen (DK)
- P. Brice, HDJ Hematologie Hopital Saint Louis Paris (F)
- JM Zaucha Onco-hematology Dept. Gdynia University Gdansk (P)
- L. Trentin, Experimental medicine, Hematology and Immunology Dept., Padua (I)
- U. Vitolo, Hematology Dept., Ospedale S. Giovanni Battista, Torino (I)
- S. Viviani, M. Gianni, Medical Oncology, Istituto Tumori, Milano (I)
- C. Stelitano, Hematology Dept., Poloiclinico A. Melacrino, Reggio Calabria (I)
- A. Levis: Hematology Dept., Ospedale S. Antonio e Biagio, Alessandria (I)
- K. Patti, Hematology Dept., Ospedale "A. Cervello", Palermo, (I)
- G. Di Raimondo Hematology Dept. and BMT Unit, University of Catania, (I)
- S. Bolis Hematology Dept. Ospedale S. Gerardo, Monza (I)
- F. Fiore, C. Castellino Hematology Dept. S. Croce Hospital Cuneo (I)

#### For Imaging exchange we thank

J. Fortineau Keosys, Nantes, France A. Stancu, PG Cerello, Dixit S.r.L, Italy





#### Thank you to international reviewers, physicists and secretary



## Thank you for the attention

Andrea Gallamini gallamini.a@ospedale.cuneo.it