International Validation Study of Prognostic role and Interpretation Criteria for Interim-PET Scan in ABVD-treated, Advanced Stage Hodgkin Lymphoma

Was the predictive value of iPET confirmed by IVS study with sufficiently robust data in HL?
Why do we need IVS?

...interim-PET scan has been proven the most powerful tool to predict treatment outcome in ABVD-treated HL. Despite repeated recommendations (Connors 2011, Gallamini 2012) interim PET is continuously performed early during therapy to guide treatment outside clinical trials. In 2009 in Deauville a retrospective multicenter clinical study was proposed to confirm the predictive role of interim PET and to “validate” retrospectively the 5-PS criteria.
What should be validated?

DEAUVILLE RULES

- Score 1 no uptake
- Score 2 uptake ≤ mediastinum
- Score 3 uptake > mediastinum but ≤ liver
- Score 4: moderately ↑uptake > liver
- Score 5 markedly ↑uptake > liver and/or new sites of disease

IVS endpoints

Primary endpoint
- To confirm the overall accuracy and Predictive Value of interim-PET scan in terms of 2-year failure-free survival

Secondary endpoints
- Propose easy reproducible international rules for early PET interpretation during ABVD chemotherapy for Hodgkin lymphoma.
- Concordance rate of reviewers among the members of the Central review panel.
Inclusion criteria

- Advanced-stage (IIIB-IVB) or poor-prognosis stage IIA* HL.
- Therapy: ABVD x 6 cycles ± consolidation RT or ABVD x 4 + IFRT
- Staging at baseline and after 2 ABVD with PET-CT (PET-0 and PET-2)
- No treatment change depending on interim-PET results.
- Patients treated with 2nd line chemotherapy for progressive/resistant lymphoma during ABVD chemotherapy eligible only with clinical and/or radiological evidence of disease progression.
- PET-0 and PET-2 performed in the same PET center
- Minimum follow-up of one year after treatment completion

* ≥ 3 nodal sites involved, bulky lesion, ESR > 40 mmHg.
Study population

400 consecutive patients affected by HL from 17 participating centres worldwide diagnosed between January 2002 and December 2009 were considered eligible and retrospectively enrolled, provided they met the inclusion criteria.
17 participating centers 261 p. enrolled from 05.11.2001 to 23.11.2009
Patient selection

400 patients enrolled

336 patients with PET/CT scans uploaded & quality controlled

260 patients with PET/CT scans approved & sent to review

Reason for PET scan exclusion
- Absence of CT images: 22
- Absence of baseline PET: 25
- Absence of interim PET: 1
- CT slices missing: 3
- PET slices missing: 10
- Poor quality scans: 6
- Miscellaneous: 9

• REVIEWERS
 - Sally Barrington - London - UK
 - Alberto Biggi - Cuneo - I
 - Michele Gregianin - Padova - I
 - Martin Hutchings - Copenhagen - DK
 - Lale Kostakoglu - New York - USA
 - Michel Meignan - Paris - F

Review results acquired and statistical analysed
Demographics (N= 260).

<table>
<thead>
<tr>
<th></th>
<th>Stage IIA patients unf.*</th>
<th>Stage IIB patients</th>
<th>Stage III patients</th>
<th>Stage IV patients</th>
<th>All patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.</td>
<td>53</td>
<td>60</td>
<td>85</td>
<td>62</td>
<td>260</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>male</td>
<td>23 (43.39%)</td>
<td>32 (53.33%)</td>
<td>48 (56%)</td>
<td>36 (58%)</td>
<td>139 (53%)</td>
</tr>
<tr>
<td>female</td>
<td>30 (56.60%)</td>
<td>28 (46.67%)</td>
<td>37 (44%)</td>
<td>26 (42%)</td>
<td>121 (47%)</td>
</tr>
<tr>
<td>Follow-up</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>median</td>
<td>35.5</td>
<td>40.4</td>
<td>34.7</td>
<td>38.4</td>
<td>37.0</td>
</tr>
<tr>
<td>range</td>
<td>7-73.7</td>
<td>1.8-105.3</td>
<td>3.2-109.9</td>
<td>2.5-78.5</td>
<td>1.8-109.9</td>
</tr>
<tr>
<td>B-symptoms</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0(0%)</td>
<td>60 (100%)</td>
<td>52 (61%)</td>
<td>41 (66%)</td>
<td>152 (58.4%)</td>
<td></td>
</tr>
<tr>
<td>Extranodal disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (3.7%)</td>
<td>8 (13%)</td>
<td>18 (21%)</td>
<td>52 (84%)</td>
<td>80 (31%)</td>
<td></td>
</tr>
<tr>
<td>Bulky disease</td>
<td>17 (32%)</td>
<td>26 (43%)</td>
<td>21 (25%)</td>
<td>15 (24%)</td>
<td>79 (30%)</td>
</tr>
<tr>
<td>IPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>--</td>
<td>--</td>
<td>9 (1)</td>
<td>0 (0)</td>
<td>9 (6%)</td>
</tr>
<tr>
<td>1</td>
<td>--</td>
<td>--</td>
<td>29 (3)</td>
<td>10 (0)</td>
<td>39 (26%)</td>
</tr>
<tr>
<td>2</td>
<td>--</td>
<td>--</td>
<td>26 (3)</td>
<td>19 (4)</td>
<td>45 (31%)</td>
</tr>
<tr>
<td>3</td>
<td>--</td>
<td>--</td>
<td>13 (1)</td>
<td>16 (6)</td>
<td>29 (20%)</td>
</tr>
<tr>
<td>4</td>
<td>--</td>
<td>--</td>
<td>6 (2)</td>
<td>11 (5)</td>
<td>17 (11%)</td>
</tr>
<tr>
<td>≥5</td>
<td>--</td>
<td>--</td>
<td>2 (1)</td>
<td>6 (1)</td>
<td>8 (5%)</td>
</tr>
<tr>
<td>Radiotherapy</td>
<td>36 (67.9%)</td>
<td>39 (65%)</td>
<td>15 (17.6%)</td>
<td>(10 (16.1%)</td>
<td>100 (38.5%)</td>
</tr>
</tbody>
</table>

* ≥ 3 nodal sites involved, bulky lesion, ESR > 40 mmHg.
First-line treatment

Treatment consisted of ABVD x 4 plus IFRT for 32 early unfavorable patients or ABVD x 6 ± consolidation RT for 20 early unfavorable and for 208 advanced-stage patients. Consolidation RT was delivered to the site of initial bulky disease in 68 patients. 212 (82.7%) achieved CR and 3 PR; all three converted to CR later. Forty-five (17.3%) had treatment failure: 31 disease progression and 14 disease relapse. Median follow-up was 37.6 months (2-110)
2nd-line chemotherapy

Median follow-up 37.6 months

45/260 (17.3%) patients were PET2 positive
- 33/45 (65%) of them (TP) had a treatment failure
 - 29 had treatment intensification for disease progression
 - 4 had a relapse

215/260 (82.7%) patients were PET2 negative
- 12 (5%) of them (FN) had a treatment failure
 - 7 had treatment intensification for disease progression
 - 5 had a relapse

44 patients changed therapy:
- 39 after a median of 7.86 months (range 2-34) at clinical progression
- 1 after 2 months due to PET findings in isolation
- 3 after 3 months for clinical evidence of disease progression
- 1 after 4 months due to PET findings in isolation.
2-nd line treatment outcome (N=45: 17%)

PET-2 positive cohort (n= 33)
• 22 patients attained CR
• 3 patients progressed
• 4 died for disease progression

PET-2 negative cohort (N= 12)
• 10 patients reached CR
• 1 patient progressed
• 1 died for disease progression.

Treatment administered
DHAP (4), IGEV (4), Unknown (7) HDS (199) followed by ASCT in 25 pts.
1-st line Tx outcome according to PET-2 and IPS

- **IPS 0-2**: 260
 - **PET-2 +**: 25
 - CR 4
 - PRO 15
 - REL 6
 - **PET-2 -**: 170
 - CR 162
 - PRO 6
 - REL 2
 - **PET-2 +**: 25
 - CR 3
 - PRO 21
 - REL 1

- **IPS 3-7**: 65
 - **PET-2 -**: 40
 - CR 38
 - PRO 1
 - REL 1

- **PET-2 +**: 19.2%

IPS 0-2: 260

- **PET-2 +**: 23
 - CR 5
 - PRO 15
 - REL 3
- **PET-2 -**: 166
 - CR 158
 - PRO 5
 - REL 3
- **PET-2 +**: 22
 - CR 7
 - PRO 14
 - REL 1

- **IPS 3-7**: 71
 - **PET-2 -**: 49
 - CR 45
 - PRO 2
 - REL 2

- **PET-2 +**: 17.3%

JCO 2007

I VS 2012
Predictive value on Tx outcome

<table>
<thead>
<tr>
<th>Parameter</th>
<th>IVS</th>
<th>JCO</th>
</tr>
</thead>
<tbody>
<tr>
<td>True Positive</td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td>True Negative</td>
<td>203</td>
<td>199</td>
</tr>
<tr>
<td>False Positive</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>False Negative</td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td>Sensitivity</td>
<td>0.732 [0.678,0.785]</td>
<td>0.81</td>
</tr>
<tr>
<td>Specificity</td>
<td>0.927 [0.896,0.959]</td>
<td>0.97</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>0.652 [0.594,0.710]</td>
<td>0.93</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>0.949 [0.922,0.976]</td>
<td>0.92</td>
</tr>
</tbody>
</table>
Gallamini A.: J Clin Oncol 2007; 25, 2235-2248

PET+ 93% - NPV 92%
SE 81%; SP 97%; ACC 92%

Biggi A.: SNM 2012

PET- 73% - NPV 94%
SE 73%; SP 94%; ACC 91%
3-y PFS according to PET-2 and IPS in stage III-IV B and all patients

Stage IIIA-IV B (N = 147)

All patients (N = 260)
Univariate analysis

<table>
<thead>
<tr>
<th>Variable</th>
<th>p Value</th>
<th>Sig.</th>
<th>95,0% CI for Exp(B)</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulky</td>
<td><0.01</td>
<td>0.048</td>
<td></td>
<td>1.000</td>
<td>1.710</td>
</tr>
<tr>
<td>Lymphocyte</td>
<td><0.01</td>
<td>0.007</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>Albumin</td>
<td><0.01</td>
<td>0.000</td>
<td></td>
<td>0.950</td>
<td>0.970</td>
</tr>
<tr>
<td>WBC</td>
<td><0.01</td>
<td>0.000</td>
<td></td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>IPS 0-2 vs. ≥ 3</td>
<td><0.01</td>
<td>0.008</td>
<td></td>
<td>0.790</td>
<td>0.970</td>
</tr>
<tr>
<td>CR vs no CR</td>
<td><0.01</td>
<td>0.000</td>
<td></td>
<td>4.070</td>
<td>7.650</td>
</tr>
<tr>
<td>LDH</td>
<td><0.01</td>
<td>0.031</td>
<td></td>
<td>0.999</td>
<td>1.000</td>
</tr>
<tr>
<td>BM</td>
<td><0.01</td>
<td>0.000</td>
<td></td>
<td>1.090</td>
<td>1.330</td>
</tr>
<tr>
<td>PET-2</td>
<td><0.01</td>
<td>0.000</td>
<td></td>
<td>1.630</td>
<td>3.110</td>
</tr>
</tbody>
</table>

Multivariate analysis (COX)

<table>
<thead>
<tr>
<th>Variable</th>
<th>p Value</th>
<th>Sig.</th>
<th>95,0% CI for Exp(B)</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bone Marrow Involvement</td>
<td><0.01</td>
<td>0.001</td>
<td></td>
<td>1.107</td>
<td>1.513</td>
</tr>
<tr>
<td>PET-2</td>
<td><0.01</td>
<td>0.000</td>
<td></td>
<td>3.136</td>
<td>7.917</td>
</tr>
</tbody>
</table>
What is the lesson from a retrospective multicenter clinical trial?

Standardization is mandatory!
3-y PFS according to local or blindended independent central review

Local centre interpretation

BICR
Uptake time

101/260 patients (38%)
Conclusions

• Predictive role of iPET was confirmed in multicenter retrospective study: 3-Y PFS for iPET-neg and iPET-pos. of 95% and 28%, respectively,
• IPS prognostic role was overridden by iPET both in “truly advanced” and in all patient series
• The PPV was 73% in IVS and 93% in Italian Danish study. The lower value probably is accounted by the different methodology or review process (blinded vs. consensus)
• Deauville 5-PS turned out robust enough as interpretation key (Cohen k 0.69-0.84: good-very good; Krippendorf alpha 0.76: excellent)
Acknowledgements

<table>
<thead>
<tr>
<th>Acknowledgments</th>
</tr>
</thead>
<tbody>
<tr>
<td>G. Mikhaeel, Medical Oncology, Guy & St. Thomas Hospital London (UK)</td>
</tr>
<tr>
<td>E. Dann, Hematology Dept. Rambam Medical Center, Haifa (IL)</td>
</tr>
<tr>
<td>M. Coleman, Hematology Dept. Cornell University New York (USA)</td>
</tr>
<tr>
<td>J. Seymour, Hematology Dept. Peter Mc Callum Cancer center, Melbourne (A)</td>
</tr>
<tr>
<td>O. Casasnovas, Hematologie Clinique, Hopital Le Bocage Dijon (F)</td>
</tr>
<tr>
<td>M. Hutchings, Onco-Hematology Dept. RigHospitalet, Copenhagen (DK)</td>
</tr>
<tr>
<td>P. Brice, HDJ Hematologie Hopital Saint Louis Paris (F)</td>
</tr>
<tr>
<td>JM Zaucha, Onco-hematology Dept. Gdynia University Gdansk (P)</td>
</tr>
<tr>
<td>L. Trentin, Experimental medicine, Hematology and Immunology Dept., Padua (I)</td>
</tr>
<tr>
<td>U. Vitolo, Hematology Dept., Ospedale S. Giovanni Battista, Torino (I)</td>
</tr>
<tr>
<td>S. Viviani, M. Gianni, Medical Oncology, Istituto Tumori, Milano (I)</td>
</tr>
<tr>
<td>C. Stellitano, Hematology Dept., Policlinico A. Melacrine, Reggio Calabria (I)</td>
</tr>
<tr>
<td>A. Levis, Hematology Dept., Ospedale S. Antonio e Biagio, Alessandria (I)</td>
</tr>
<tr>
<td>K. Patti, Hematology Dept., Ospedale “A. Cervello”, Palermo, (I)</td>
</tr>
<tr>
<td>G. Di Raimondo, Hematology Dept. and BMT Unit, University of Catania, (I)</td>
</tr>
<tr>
<td>S. Bolis, Hematology Dept. Ospedale S. Gerardo, Monza (I)</td>
</tr>
<tr>
<td>F. Fiore, C. Castellino, Hematology Dept. S. Croce Hospital Cuneo (I)</td>
</tr>
</tbody>
</table>

For Imaging exchange we thank

J. Fortineau Keosys, Nantes, France
A. Stancu, PG Cerello, Dixit S.r.L, Italy

![Keosys Medical Imaging](image1.png)

![Widen](image2.png)
Thank you to international reviewers, physicists and secretary
Thank you for the attention

Andrea Gallamini
gallamini.a@ospedale.cuneo.it