Integrating PET and MRD in follicular lymphoma

Stefano Luminari, MD
Medical Oncology
Università di Modena e Reggio Emilia, Modena Italy
Current concepts in FL

• The identification patients at high risk of relapse is a critical goal of modern research in oncohematology and FL.

• Individual risk of relapse is estimated:
 – Before therapy: Prognostic scores (FLIPI and FLIP2), biomarkers, SNPs, GEP mol. signatures
 – After therapy: FDG-PET, CT-scan, MRD
Response assessment in FL

PET:
• Has the highest prognostic impact on PFS and OS Trotman et al Lancet Hematol 2014 Vol1 n1 p1
• Is now recommended for staging and response assessment in updated criteria Cheson et al JCO 2014

CT:
• Is difficult to assess (SPD) Cheson et al JCO 2007
• Has limited capacity to assess extranodal disease
• Has lower prognostic impact than FDG-PET for PFS and none for OS Trotman et al Lancet Hematol 2014 Vol1 p1 n1

Molecular analysis:
• Has the highest sensitivity among available methods in CLL and MCL
• FL are an excellent model due to t(14;18) chr. Translocation Gribben et al. Blood 1994
Schematic representation of t(14;18) chromosomal translocation

Germline BCL-2 chr 18q21

Genomic DNA Chr 14q+

Germline BCL-2 chr 18q21:
- 3% MBR
- 81% MBR
- 16% MCR

Genomic DNA Chr 14q+:
- Chromosomal translocation involving Chr 14 and Chr 18
- 225 kb

First PCR
- t(14;18)+
- t(14;18)-
- cDNA

Nested PCR
- t(14;18)+
- t(14;18)-
- cDNA
MRD may indicate depth of remission and predict relapse

Detection limit of cytology/CT scan1: 10^{-1}–10^{-2}

Detection limits of flow cytometry and PCR techniques3: 10^{-4}–10^{-6}

Still in remission and MRD negative

Prognostic role of Minimal residual disease and beta2-microglobulin in patients with FL

Minimal residual disease assessment of the GITMO randomized trial comparing R-CHOP vs R-HDS in high risk FL patients

Effect of MRD by response status and treatment group.

Current problems with MRD in FL

• No universal marker (t(14;18) available in~60%)
• Needs BM aspirate
• Compartment phenomenon (BM, PB and LN)
• Timing of MRD is uncertain
• No clear understanding of very low concentration of FL cells (false positives)
• No study has ever correlated MRD and FDG PET
 PET RESPONSE AND MINIMAL RESIDUAL DISEASE IMPACT ON PROGRESSION-FREE SURVIVAL IN PATIENTS WITH FOLLICULAR LYMPHOMA

Poster B10

- Pts with centrally reviewed PET (5PS x3 with liver cutoff) (FOLL05; N=79)
- Baseline search for t(14;18)*(N=68)
- MRD analysis* on postinduction BM sample (N=41)

Table 1. Distribution of cases according to piPET and MRD

<table>
<thead>
<tr>
<th></th>
<th>MRD -</th>
<th>MRD+</th>
</tr>
</thead>
<tbody>
<tr>
<td>piPET-</td>
<td>28 (68%)</td>
<td>8 (20%)</td>
</tr>
<tr>
<td>piPET+</td>
<td>2 (5%)</td>
<td>3 (7%)</td>
</tr>
</tbody>
</table>

\[P = 0.110 \ K=.249(FAIR) \]

Figure 1. PFS according to piPET

- piPET- (score 0-3), N=36
- piPET+ (score 4-5), N=5

Figure 2. PFS according to MRD

- MRD-, N=30
- MRD+, N=11

<table>
<thead>
<tr>
<th></th>
<th>HR</th>
<th>95%CI</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>piPET+</td>
<td>3.62</td>
<td>1.15-11.4</td>
<td>.028</td>
</tr>
<tr>
<td>MRD+</td>
<td>2.54</td>
<td>0.96-6.72</td>
<td>.060</td>
</tr>
</tbody>
</table>

(*) nested PCR for t(14;18) ch. translocation. All tests were performed within the Fil MRD network (Galimberti et al. Submitted)
PET response and minimal residual disease impact on progression-free survival in patients with follicular lymphoma.
FOLL12 TRIAL DESIGN (EudraCT Number: 2012-003170-60)
1° line, stage II–IV, FL (P.I. M. Federico)

FOLLICULAR NHL
Grade I–II–IIIa
Age 18–75
Stage II–IV
Active disease
FLIPI2≥1
Preliminary analysis of PET and t(14;18) from the FOLL12 clinical trial

- 193 patients enrolled at 8/2014
- All baseline and restaging PET were centralized and reviewed at the end of induction therapy (Widen)
- Molecular analysis was performed timely at registration and at the end of therapy* by FIL MRD network.
- 118 FL had a detectable t(14;18)(61%) at time of diagnosis (LN, BM or PB)
- Preliminary results are available for
 - Staging PET and qualitative molecular analysis (N=118)*
 - Staging PET and quantitative molecular analysis (N=83)*
 - Not enough data for restaging PET and MRD analysis

(*) nested PCR for t(14;18) ch. translocation. All test were performed within the FIL MRD network
Baseline characteristics (n=118)

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>%pend.</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM (IHC) +</td>
<td>118</td>
<td>-</td>
<td>67 (57)</td>
</tr>
<tr>
<td>PET bone +</td>
<td>118</td>
<td>-</td>
<td>40 (34)</td>
</tr>
<tr>
<td>t(14;18) BM qual +</td>
<td>118</td>
<td>-</td>
<td>77 (65)</td>
</tr>
<tr>
<td>t(14;18) PB qual +</td>
<td>111</td>
<td>6</td>
<td>66 (59)</td>
</tr>
<tr>
<td>t(14;18) + (BM or PB +)</td>
<td>118</td>
<td>-</td>
<td>79 (67)</td>
</tr>
</tbody>
</table>

Median (2.5-97.5°)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>t(14;18) BM quant *</td>
<td>83</td>
<td>30</td>
<td>-2.30 (-8; 0.270)</td>
</tr>
<tr>
<td>t(14;18) PB quant *</td>
<td>75</td>
<td>36</td>
<td>-2.40 (-8; 0.130)</td>
</tr>
</tbody>
</table>

* Quantitative bcl2 MRD in Log10
PET and t(14;18) qualitative test as surrogates for BM involvement in FL

<table>
<thead>
<tr>
<th></th>
<th>Sens</th>
<th>Spec</th>
<th>PPV</th>
<th>NPV</th>
<th>ACC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDG-PET (bone)</td>
<td>0.45</td>
<td>0.8</td>
<td>0.75</td>
<td>0.53</td>
<td>0.6</td>
</tr>
<tr>
<td>t(14;18) (BM)</td>
<td>0.72</td>
<td>0.39</td>
<td>0.61</td>
<td>0.51</td>
<td>0.58</td>
</tr>
<tr>
<td>PET and t(14;18)</td>
<td>0.62</td>
<td>0.58</td>
<td>0.81</td>
<td>0.35</td>
<td>0.61</td>
</tr>
</tbody>
</table>
Integrating PET and MRD in follicular lymphoma

Conclusions

• Both FDG-PET and t(14;18) analysis are good techniques to study FL and there is a rationale to combine them.

• Very preliminary results suggest that it is useful to integrate PET and MRD analysis (staging and restaging).

• FOLL12 trial will provide new data on PET and MRD correlation.

• In the future new molecular techniques (NGS) will probably overcome some of the current limitations of MRD analysis in FL and other NHL.
Acknowledgments

FIL datacenter
Massimo Federico
Alessandra Dondi
Monica Bellei
Martina Manni
Luigi Marcheselli

FIL Imaging committee
Annibale Versari
Antonella Franceschetto
Luca Guerra
Stephan Chauvie

FIL MRD network
Sara Galimberti
Marco Ladetto
Gianluca Gaidano