

University of London

Combination of Baseline MTV & Deauville score >2 cycles improves prediction of PFS in DLBCL

NG Mikhaeel, D Smith, JT Dunn, M Phillips, PA Fields, H Møller, SF Barrington

5th International workshop on PET in Lymphoma,

Menton, 19 Sept 2014

Background

- PET-CT using FDG demonstrates **early response** to chemotherapy in DLBCL.
- Previous studies using DS or ∆SUVmax alone showed low PPV and were not able to identify a group with sufficiently poor prognosis who may be candidates for testing early change in treatment.
- Prognosis of DLBCL is determined by many other factors in addition to early response to chemotherapy.
- Response assessment with DS or ∆SUVmax is based on assessing level of residual uptake after few cycles of chemotherapy but does not make full use of baseline PET information.

PFS = 85% for negative patients& 72% for positive patient

P = .047

Pregno P et al. Blood 2012;119:2066

Casasnovas R et al. Blood 2011;118:37

70

17% (12) 83% (58) NA (NA NA)

% SUVmax reduction PET0-2 >66%

Patient 1

Baseline

R-CHOP x 2

Patient 2

Baseline

R-CHOP x 2

Objectives

- Evaluate the prognostic value of quantitative parameters particularly metabolic tumour burden
- Test the hypothesis that "combining measurement of metabolic tumour burden at baseline with early PET response could improve the prognostic ability of iPET in DLBCL".
- Identify a group of patients with sufficiently poor prognosis who may be candidates for testing alternative approaches.

Patient Population

147 patients treated at Guy's & St Thomas' Hospital, London.

Inclusion

- New diagnosis DLBCL March 2005 August 2012
- R-CHOP
- PET/CT at baseline and after 2 cycles
- Minimum FU 12 months

Exclusion

- Concurrent LGL or other malignancy
- Previous Anthracycline exposure
- No assessable disease on baseline PET/CT

Treatment Protocol

*If localised stage + non-bulky: 3-4 cycles + IFRT

Imaging

- FDG-PET/CT
 - FDG 350 MBq, 90 min uptake time
 - Reported by 2 NM physicians
- **PET review:** all scans reviewed (blindly) for study:
 - Sites of disease
 - Baseline staging
 - Deauville score after 2 cycles
- Segmentation
 - PETRRA software for automated segmentation
 - NM physician manually modified volumes to exclude physiological uptake.

Quantitative parameters

Baseline:

- **SUVmax-0:** baseline maximum Standardised Uptake Value
- MTV-0 (Metabolic Tumour Volume): baseline total metabolic volume of all lesions, defined by SUV≥2.5 threshold
- TLG-0 (Total Lesion Glycolysis): bMTV x mean SUV

>2 cycles:

- SUVmax-2
- MTV-2
- TLG-2

% change (% reduction from baseline):

- **\(\Delta SUVmax)**
- **ΔMTV**
- **\(\Delta TLG\)**

• IPI

• Deauville score (DS)

Statistical Analysis

- End point: PFS
- Cox regression:
 - to test the relationship between PFS and the study variables
 - Non-categorical data were grouped into tertiles
- Receiver Operator Characteristics (ROC) analysis :
 - to determine optimal cutoff
- KM survival analysis
 - using optimal cutoff
 - KM analysis of combined parameters to define worst prognostic group

Patient characteristics

Sex	Female Male	74 73
Age	Range Median	22 – 86 57
Stage	I II III IV	17 (11%) 29 (20%) 16 (11%) 85 (58%)
IPI	0/1 2 3 4/5	45 (31%) 18 (12%) 38 (26%) 46 (31%)

PFS & OS for all patients

Univariate analysis

Baseline	> 2 cycles		
IPI	DS		
SUVmax-0	SUVmax-2	ΔSUVmax	
MTV-0	MTV-2	ΔΜΤΥ	
TLG-0	TLG-2	ΔTLG	

Significant variables

Baseline	> 2 cycles		
IPI	DS		
	SUVmax-2	ΔSUVmax	
MTV-0	MTV-2		
TLG-0	TLG-2		

MVA

Baseline	> 2 cycles			
IPI	DS			
	SUVmax-2	ΔSUVmax		
MTV-0	MTV-2			

MEASURE	LEVELS	CASES	MULTIVARIATE			
		(n=147)		HR 95% C.I for HR		or HR
IPI groups	(0,1)	45		1.00		
	2	18		2.95	0.82	10.60
	3	38		2.30	0.74	7.21
	(4,5)	46		2.98	0.98	9.08
		TREND:	X ² =	2.78	P-value =	.0955
DS	1	34		1.00		
-	2	18		0.21	0.04	1.09
	3	30		0.06	0.01	0.42
	4	47		0.09	0.01	0.62
	5	18		0.23	0.03	1.88
		TREND:	x2 =	0.95	P-value =	.3303
MTV-0	Lower	49		1.00		
Tertiles	Middle	49		2.73	.89	8.40
	Upper	49		3.46	1.10	10.86
		TREND:	x2 =	4.00	P-value =	.0454
SUVmax-2	Lower	49		1.00		
Tertiles	Middle	49		2.56	.20	33.22
	Upper	49		0.98	.06	16.10
		TREND:	x2 =	2.40	P-value =	.1216
MTV-2	Lower	59		1.00		
Tertiles	Middle	39		4.16	.49	35.29
	Upper	49		8.08	.72	90.67
		TREND:	X ² =	3.02	P-value =	.0820
∆ SUVmax	Lower	49		1.00		
Tertiles	Middle	49		1.04	.32	3.31
	Upper	49		1.16	.32	4.17
		TREND:	x2 =	0.09	P-value =	.7701

Receiver Operator Characteristic (ROC) analysis for continuous variables

P<.0001

P=.001

P<.001

P<.001

P=.02

P<.001

MTV-0 + DS

Summary & Conclusion

- Baseline MTV and TLG were strongly predictive of prognosis but the change in these parameters after 2 cycles of chemotherapy was not
- On MVA, baseline MTV was the only significant parameter
- A model combining MTV-0 and DS improves prediction of PFS and identifies a group with significantly low PFS, where most of the events occur.
- The results will be validated in the completed UK-NCRI prospective blinded study

Acknowledgment

- Lymphoma team:
 - Betty Cheung
 - Ana Duran
 - Paul Fields
 - Nicholas Ketley
 - Naheed Mir
 - Daniel Smith
 - M Thanigai Kumar
 - Tullie Yeghen
 - David Wrench
- PET imaging centre:
 - Sally Barrington
 - Joel Dunn
 - Michael O'Doherty
 - Michael Philips
 - Victoria Warbey
- Statistician
 - Henrik Møller