Poster discussion
PET in lymphoma - clinical

Ulrich Dührsen
Department of Hematology
University Hospital Essen
Poster discussion – PET in lymphoma

Philosophy of the abstract volume

<table>
<thead>
<tr>
<th>Section</th>
<th>No. abstracts</th>
<th>Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>13</td>
<td>Hodgkin lymphoma</td>
</tr>
<tr>
<td>B</td>
<td>17</td>
<td>Non-Hodgkin lymphoma</td>
</tr>
<tr>
<td>C</td>
<td>6</td>
<td>Metabolic tumor volume</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>Other technical studies</td>
</tr>
<tr>
<td>LBA</td>
<td>1</td>
<td>Hodgkin lymphoma</td>
</tr>
</tbody>
</table>
Poster discussion – PET in lymphoma

Clinically versus technically oriented studies

45 abstracts on ‘PET in lymphoma’

29 clinically oriented studies
 A1-A9, A13, B1, B3-B7, B10, B12-B17, C1, C3, C4, C6, D6, LBA

16 technically oriented studies
 A10-A12, B2, B8, B9, B11, C2, C5, D1-D5, D7, D8

12 brief presentations

8 clinically oriented studies
 A4, A13, B5, B12, B13, C4, D6, LBA

6 technically oriented studies
 A12, C2/C5, D2, D7/D8
Poster discussion – PET in lymphoma

29 clinically oriented studies

<table>
<thead>
<tr>
<th></th>
<th>HL</th>
<th>DLBCL</th>
<th>PMBCL</th>
<th>BL</th>
<th>PCNSL</th>
<th>PTCL</th>
<th>FL</th>
<th>MZL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>A2, A5, A6, A13, C1, C3, D6</td>
<td>B5, D6</td>
<td></td>
<td></td>
<td></td>
<td>C4</td>
<td>D6</td>
<td>B14</td>
</tr>
<tr>
<td>Interim</td>
<td>A1, A3, A4, A6, A9, B17</td>
<td>B4, B6, B7, B15</td>
<td>B17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post</td>
<td>A7</td>
<td>B3</td>
<td>B1</td>
<td></td>
<td></td>
<td>B16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Follow-up</td>
<td>LBA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Poster discussion – PET in lymphoma

25 clinically oriented studies

Baseline PET/CT

Diagnostic accuracy
Baseline PET/CT - NLPHEL

A5: Grellier et al, Paris, France

Entity / study goal: NLPHEL / performance of pre-therapeutic PET/CT
No. of patients: 35 (27 untreated, 8 relapsed), retrospective
Gold standard: CT

Results:
Per site analysis:
Sensitivity 100 % → Bone (marrow) lesions 20 %
Specificity 99 %
Positive predictive value 97 %
Negative predictive value 100 %
Accuracy 99 % → Stage modification 34 %

Conclusions: FDG-PET/CT is useful to define stage in NLPHEL
Baseline PET/CT – MALT lymphomas

B14: Treglia et al, Bellinzona, Switzerland

Entity / study goal: Marginal zone lymphoma MALT / detection rate
Studies: 20 (published until February 2014)
No. of patients: 376, meta-analysis
Gold standard: ?

Results:

<table>
<thead>
<tr>
<th></th>
<th>PET</th>
<th>PET/CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall detection rate</td>
<td>73 %</td>
<td>69 %</td>
</tr>
<tr>
<td>Bronchial MALT</td>
<td>94 %</td>
<td></td>
</tr>
<tr>
<td>Head & Neck MALT</td>
<td>90 %</td>
<td></td>
</tr>
<tr>
<td>Gastric MALT</td>
<td>62 %</td>
<td></td>
</tr>
<tr>
<td>Ocular MALT</td>
<td>49 %</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: MALT lymphomas are variably FDG-avid
Potential clinical role (radiotherapy in localized stages?)
Poster discussion – PET in lymphoma

25 clinically oriented studies

Baseline PET/CT

Bone marrow involvement
Baseline PET/CT – Hodgkin lymphoma

A2: Zwarthoed et al, Nice, France

Entity / study goal: Hodgkin lymphoma / bone (marrow) involvement
No. of patients: 152, advanced stage, retrospective
Gold standard: ? (bone marrow biopsy)
Treatment: ABVD

Results:

<table>
<thead>
<tr>
<th></th>
<th>PET/CT</th>
<th>Biopsy</th>
<th>3-yr PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Focal uptake</td>
<td>23 (15 %)</td>
<td>6 (of 11)</td>
<td>60 % vs. 79 %</td>
</tr>
<tr>
<td>Diffuse uptake (≤ or > liver)</td>
<td>42 (28 %), correlated with spleen uptake, leukocytosis, anemia, hypalbuminemia, B symptoms</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions:
Focal uptake – stage IV disease
Diffuse uptake – reactive changes
Biopsy rarely changes stage, never changes treatment
Excellent reviewer concordance (kappa coefficient 0.86)
Baseline PET/CT – BM involvement

D6: Ujjani et al, Washington, D.C., USA

The utility of 18F-FDG PET/CT in assessing bone marrow involvement in lymphoma (HL, DLBCL, FL)
Poster discussion – PET in lymphoma

25 clinically oriented studies

Baseline PET/CT

Prognostic impact
Baseline PET/CT – Hodgkin lymphoma

C1: Touati et al, Limoges, France

Entity / study goal: Hodgkin lymphoma / metabolic tumor volume
No. of patients: 46, stage I – IV, retrospective
Threshold for MTV: \(\geq \) liver SUV + 3 SD (50 cm³ of normal liver)
Treatment: ?

Results:
Median MTV 194 cm³

ROC analysis
<table>
<thead>
<tr>
<th>MTV ≤ 310 cm³</th>
<th>No. pts. (%)</th>
<th>2-yr EFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>27 (59 %)</td>
<td>89 %</td>
<td></td>
</tr>
<tr>
<td>MTV > 310 cm³</td>
<td>19 (41 %)</td>
<td>28 %</td>
</tr>
</tbody>
</table>

no correlation with CD68

Conclusions: Initial MTV predicts EFS in HL
(independently of other factors)
Baseline PET/CT – Hodgkin lymphoma

C3: Patel et al, Leeds, United Kingdom

Entity / study goal: Hodgkin lymphoma / metabolic tumor volume
No. of patients: 77, stage II – III (BM biopsy normal), retrospective
Threshold for MTV: 30 % or 40 % of SUVmax
Bone marrow uptake: normal vs. reactive
Treatment: ?

Results:
No correlation between PFS and SUVmax, MTV or TLG
Correlation between PFS and BM uptake pattern (reactive: HR 2.78)

Conclusions: Initial SUVmax, MTV or TLG do not predict PFS in HL
BM uptake pattern correlates with PFS
(cytokines released by HRS cells or monocytes?)
Baseline PET/CT – prognostic impact

B5: Hüttmann et al, Essen, Germany
Outcome of aggressive non-Hodgkin‘s lymphoma patients with a negative pre-treatment PET scan

A13: Kurch et al, Leipzig, Germany
Relevance of non-FDG-avid areas inside a tumour mass in paediatric Hodgkin lymphoma patients

C4: Cottereau et al, Rouen, France
Prognostic value of metabolic tumor volume measured on 18F-FDG PET/CT in patients with nodal presentation T cell lymphoma
Poster discussion – PET in lymphoma

25 clinically oriented studies

Interim PET/CT

Prognostic impact in HL
Interim PET/CT – Hodgkin lymphoma

A1: Miltényi et al, Debrecen, Hungary

Entity / study goal: Hodgkin lymphoma / interim PET/CT
No. of patients: 113 (62 early + 51 advanced), retrospective
Time point: After 2nd cycle
Evaluation: Deauville criteria
Treatment: ABVD

Results:

<table>
<thead>
<tr>
<th></th>
<th>NPV</th>
<th>PPV</th>
<th>5-yr RFS</th>
<th>5-yr OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>All patients</td>
<td>93 %</td>
<td>57 %</td>
<td>93 % vs. 41 %</td>
<td>93 % vs. 58 %</td>
</tr>
<tr>
<td>Early</td>
<td>100 %</td>
<td>54 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced</td>
<td>82 %</td>
<td>59 %</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: Interim PET/CT is predictive of RFS and OS in HL NPV better than PPV
Interim PET/CT – Hodgkin lymphoma

A3: Zaucha et al, Gdynia, Poland

Entity / study goal: Hodgkin lymphoma / interim PET/CT
No. of patients: 238 (71 early + 167 advanced), retrospective
Time point: After 1st (± 2nd) cycle
Evaluation: Deauville criteria (positive: 4+5)
Treatment: ABVD

Results:

<table>
<thead>
<tr>
<th></th>
<th>iPET1+</th>
<th>iPET2+</th>
<th>NPV</th>
<th>2-yr PFS (- vs. +)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early</td>
<td>15 %</td>
<td>3 %</td>
<td>100 %</td>
<td>100 % vs. 80 %</td>
</tr>
<tr>
<td>Advanced</td>
<td>31 %</td>
<td>13 %</td>
<td>88 %</td>
<td>91 % vs. 47 %</td>
</tr>
</tbody>
</table>

iPET1- / iPET2-: 7 % / 14 % relapses in advanced stages

Conclusions: Interim PET/CT is predictive of PFS in HL
NPV of iPET better in early stages than in advanced stages
Interim PET/CT – Hodgkin lymphoma

A6: Dann et al, Haifa, Israel

Entity / study goal: Hodgkin lymphoma / interim PET/CT
No. of patients: 308, prospective
Time point: After 2nd cycle
Evaluation: Dynamic visual score, Deauville score
Treatment: ABVD (A), BEACOPPesc (B), radiotherapy (RT)

<table>
<thead>
<tr>
<th>Stages</th>
<th>iPET negative</th>
<th>iPET positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early favorable</td>
<td>2 x A + RT</td>
<td>2 x A + 2 x A + RT</td>
</tr>
<tr>
<td>Early unfavorable</td>
<td>2 x A + 2 x A + RT</td>
<td>2 x A + 4 x A + RT</td>
</tr>
<tr>
<td>Advanced IPS 0-2</td>
<td>2 x A + 4 x A</td>
<td>2 x A + 2 x B + RT</td>
</tr>
<tr>
<td>Advanced IPS 3-7</td>
<td>2 x B + 4 x A</td>
<td>2 x A + 2 x B + RT</td>
</tr>
</tbody>
</table>

Results:

<table>
<thead>
<tr>
<th></th>
<th>NPV</th>
<th>PPV</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic visual score</td>
<td>88 %</td>
<td>29 %</td>
<td>81 %</td>
</tr>
<tr>
<td>Deauville</td>
<td>89 %</td>
<td>38 %</td>
<td>83 %</td>
</tr>
</tbody>
</table>

Conclusions: Both scores are predictive of PFS
Deauville slightly superior to dynamic visual score
Interim PET/CT – HL and PMBCL

B17: Algrin et al, Nice, France

Entity / study goal: Mediastinal lymphomas / interim PET/CT
No. of patients: 112 (68 HL + 44 PMBCL), retrospective
Time point: After 2nd or 4th cycle (PET2, PET4)
Evaluation: Deauville, Cheson, Gallamini, Dann / ΔSUV
Treatment: ?

Results:

<table>
<thead>
<tr>
<th>Entity</th>
<th>5-yr-PFS</th>
<th>5-yr-PFS</th>
<th>PET2</th>
<th>PET4</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL</td>
<td>68 %</td>
<td>ΔSUV >66 %</td>
<td>77 %</td>
<td>86 %</td>
</tr>
<tr>
<td>PMBCL</td>
<td>93 %</td>
<td>ΔSUV <66 %</td>
<td>67 %</td>
<td>47 %</td>
</tr>
</tbody>
</table>

PET4 predicts PFS by Deauville score (only score 5) and ΔSUV

Conclusions: Interim PET/CT is predictive of PFS in mediastinal lymphomas
Poster discussion – PET in lymphoma

25 clinically oriented studies

Interim PET/CT

Prognostic impact in DLBCL and BL
Interim PET/CT – DLBCL

B6: Hutchings et al, Copenhagen, Denmark

Entity / study goal: DLBCL / interim PET/CT
No. of patients: 70 (37 PET1 + 33 PET2), prospective
Time point: Before therapy, after 1st and 2nd cycle and at end of treatment (PET0, PET1, PET2, EOT)
Evaluation: iPET: Deauville (pos.: 4+5), ΔSUV; EOT: IHP
Treatment: GA101 + CHOP (response: CR + PR)

Results:

<table>
<thead>
<tr>
<th></th>
<th>PET1-</th>
<th>PET1+</th>
<th>PET2-</th>
<th>PET2+</th>
<th>Correlation</th>
<th>EOT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deauville PET1</td>
<td>49 %</td>
<td>51 %</td>
<td></td>
<td></td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Deauville PET2</td>
<td></td>
<td></td>
<td>67 %</td>
<td>33 %</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>ΔSUV PET1/PET0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Weak</td>
<td></td>
</tr>
<tr>
<td>ΔSUV PET2/PET0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions: Interim PET/CT is not predictive of EOT response in DLBCL
But: PET+ PR rated as EOT response, no PFS data
Interim PET/CT – DLBCL

B4: Mylam et al, Odense, Denmark

Entity / study goal: DLBCL / interim PET/CT
No. of patients: 112, prospective
Time point: Before therapy and after 1st cycle (PET0, PET1)
Evaluation: IHP, Deauville criteria (positive: 4+5 or 5)
Treatment: ?

Results:

<table>
<thead>
<tr>
<th>2-yr-PFS:</th>
<th>iPET-</th>
<th>iPET+</th>
</tr>
</thead>
<tbody>
<tr>
<td>IHP</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Deauville 4+5</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>Deauville 5</td>
<td>85 %</td>
<td>51 %</td>
</tr>
<tr>
<td>Tumor/liver SUVmax</td>
<td>3.1</td>
<td>90 %</td>
</tr>
</tbody>
</table>

p=0.002

Conclusions:

Interim PET/CT is not predictive of PFS in DLBCL
Deauville 4+5 vs. 5 may be improved by use of T/L-SUV
Interim PET/CT

Deauville 5-point scale: Cut-off between 4 and 5?

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No uptake</td>
</tr>
<tr>
<td>2</td>
<td>Uptake ≤ mediastinum</td>
</tr>
<tr>
<td>3</td>
<td>Uptake > mediastinum < liver</td>
</tr>
<tr>
<td>4</td>
<td>Uptake moderately increased above liver at any site</td>
</tr>
<tr>
<td>5</td>
<td>Markedly increased uptake at any site including new sites of disease</td>
</tr>
</tbody>
</table>
Interim PET/CT – AIDS-related lymphoma

B15: Viau et al, Nice, France

<table>
<thead>
<tr>
<th>Entity / study goal:</th>
<th>AIDS-related lymphoma / interim PET/CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of patients:</td>
<td>19 (8 HL + 6 DLBCL + 5 BL), retrospective</td>
</tr>
<tr>
<td>Time point:</td>
<td>Before therapy and after 2nd or 3rd cycle</td>
</tr>
<tr>
<td>Evaluation:</td>
<td>ΔSUVmax, ΔSULmax, ΔMTV (> vs. < 66 %) ; Deauville (positive: 4+5), tumor/liver activity</td>
</tr>
<tr>
<td>Treatment:</td>
<td>? (tumorSULmax/liverSULmean)</td>
</tr>
</tbody>
</table>

Results:

<table>
<thead>
<tr>
<th>3-yr-OS:</th>
<th>Good response</th>
<th>Poor response</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔSUVmax / ΔSULmax</td>
<td>87 %</td>
<td>33 %</td>
<td><0.0001</td>
</tr>
<tr>
<td>ΔMTV</td>
<td>n.s.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deauville</td>
<td>81 %</td>
<td>44 %</td>
<td>n.s.</td>
</tr>
<tr>
<td>Tumor/liver activity </> 5</td>
<td>84 %</td>
<td>33 %</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

Conclusions: ΔSUVmax is predictive of OS in AIDS-related lymphoma

Ratio tumorSULmax/liverSULmean is promising
Interim PET/CT – Burkitt lymphoma

C6: Shah et al, Mumbai, India

Entity / study goal: Burkitt lymphoma / interim PET/CT
No. of patients: 21 (14 children + 7 adults), retrospective
Time point: Before therapy and after 2nd or 3rd cycle
Evaluation: ΔSUVmax, ΔTLG
Treatment: ?

Results:

<table>
<thead>
<tr>
<th>100 % reduction SUVmax and TLG</th>
<th>No. pts.</th>
<th>2-yr-DFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>100 %</td>
<td></td>
</tr>
<tr>
<td>> 90 % reduction SUVmax and TLG</td>
<td>3</td>
<td>100 %</td>
</tr>
<tr>
<td>< 90 % reduction SUVmax and TLG</td>
<td>5</td>
<td>40 %</td>
</tr>
</tbody>
</table>

Conclusions: Both ΔSUVmax and ΔTLG are predictive of DFS in BL
High NPV (reliable identification of long-term responders)
Poster discussion – PET in lymphoma

25 clinically oriented studies

Interim PET/CT

Additional prognostic factors
Interim PET/CT – HL: tumor shrinkage

A9: Kobe et al, Cologne, Germany

Entity / study goal: Hodgkin lymphoma / interim PET/CT + tumor size
No. of patients: 739 (residual tumor ≥ 2.5 cm), prospective (HD15)
Time point: After chemotherapy, decision to deliver radiotherapy
Evaluation: Visual (central review)
Treatment: BEACOPP variants ± radiotherapy

Results:

<table>
<thead>
<tr>
<th>Status</th>
<th>No. pts.</th>
<th>4-yr-PFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET negative (no radiotherapy)</td>
<td>548 (74 %)</td>
<td>92 %</td>
</tr>
<tr>
<td>PET positive (radiotherapy)</td>
<td>191 (26 %)</td>
<td>86 %</td>
</tr>
<tr>
<td>PET positive + ≥ 40 % shrinkage</td>
<td>137 (19 %)</td>
<td>93 %</td>
</tr>
<tr>
<td>PET positive + < 40 % shrinkage</td>
<td>54 (7 %)</td>
<td>72 %</td>
</tr>
</tbody>
</table>

Conclusions: Tumor shrinkage (as determined by CT) is predictive of PFS in HL pts. receiving RT for residual PET+ lesions
Interim PET/CT – DLBCL: molecular feat.

B7: Scherman et al, Creteil, France

Entity / study goal: DLBCL / interim PET/CT + molecular features
No. of patients: 91 (IHC + FISH: BCL2, BCL6, MYC), retrospective
Time point: After 2nd cycle
Evaluation: Visual, ΔSUVmax
Treatment: ?

Results:

Slow metabolic response + BCL2 overexpression or BCL2 gene alteration
→ poor prognosis

Conclusions: BCL2 abnormalities improve prediction by iPET
Interim PET/CT – HL: lympho/mono ratio
A4: Simon et al, Debrecen, Hungary

Prognostic role of
peripheral lymphocyte/monocyte ratio and
interim PET/CT in Hodgkin lymphoma patients
Poster discussion – PET in lymphoma

25 clinically oriented studies

Post-treatment PET/CT

Prognostic impact
Post-treatment PET/CT – PCNSL

B16: Edeline et al, Saint-Cloud, France

Entity / study goal: PCNSL / post-treatment PET/CT
No. of patients: 10 (post-treatment: 9), retrospective
Time point: Pre- and post-treatment, comparison MRI
Evaluation: Visual and SUVmax (activity > surrounding brain)
Treatment: Chemotherapy (± radiotherapy)

Results:

<table>
<thead>
<tr>
<th></th>
<th>Pre PET+</th>
<th>PET-</th>
<th>Post PET+</th>
<th>PET-</th>
<th>Post-MRI+</th>
<th>MRI-</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. pts.</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Relapse</td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Conclusions: Poor NPV of post-treatment PET/CT
MRI superior
Poster discussion – PET in lymphoma

25 clinically oriented studies

Post-treatment PET/CT

Additional prognostic factors
Post-treatment PET/CT – FL: MRD

B10: Luminari et al, Modena, Italy

Entity / study goal: Follicular lymphoma / post-treatment PET/CT + MRD
No. of patients: 41 (BCL2/IGH positive in bone marrow), prospective
Time point: End of treatment
Evaluation: Deauville (positive: 4+5)
Treatment: ?

Results:

<table>
<thead>
<tr>
<th></th>
<th>No. pts. (%)</th>
<th>PET- vs. PET+</th>
<th>MRD- vs. MRD+</th>
<th>PET-/MRD- vs. PET+ ± MRD+</th>
<th>PFS (HR)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PET- / MRD -</td>
<td>28 (68 %)</td>
<td></td>
<td></td>
<td></td>
<td>3.61</td>
<td>0.028</td>
</tr>
<tr>
<td>PET- / MRD+</td>
<td>8 (20 %)</td>
<td></td>
<td></td>
<td></td>
<td>2.54</td>
<td>0.060</td>
</tr>
<tr>
<td>PET+ / MRD-</td>
<td>2 (5 %)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET+ / MRD+</td>
<td>3 (7 %)</td>
<td></td>
<td></td>
<td></td>
<td>3.42</td>
<td>0.012</td>
</tr>
</tbody>
</table>

Conclusions: PET/CT and MRD provide independent information. Combining post-treatment PET/CT with post-treatment MRD improves prediction of PFS.
Post-treatment PET/CT – follicular lymph.

B12: Kostakoglu et al, New York, USA
Post-induction therapy FDG-PET is prognostic for PFS in relapsed follicular lymphoma: a preliminary analysis of the GAUSS study

B13: Trotman et al, Sydney, Australia
Prognostic value of PET/CT after frontline therapy in follicular lymphoma: applying the 5PS in three multicenter studies
Poster discussion – PET in lymphoma

25 clinically oriented studies

Follow-up PET/CT

Detection of relapse
Follow-up PET/CT – Hodgkin lymphoma

LBA: Pugliese et al, Naples, Italy

A randomized trial of routine surveillance imaging procedures:
ultrasonography / chest radiography vs. FDG PET/CT
for detecting relapse
in patients with advanced stage Hodgkin lymphoma