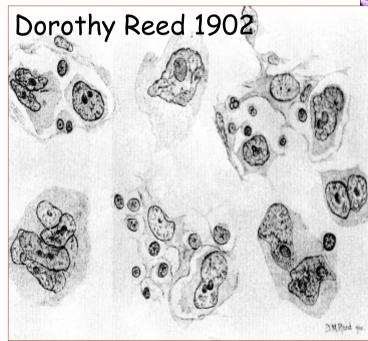
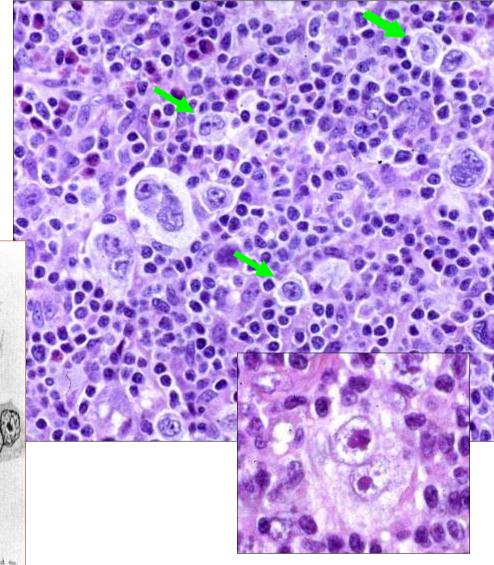
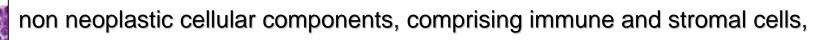


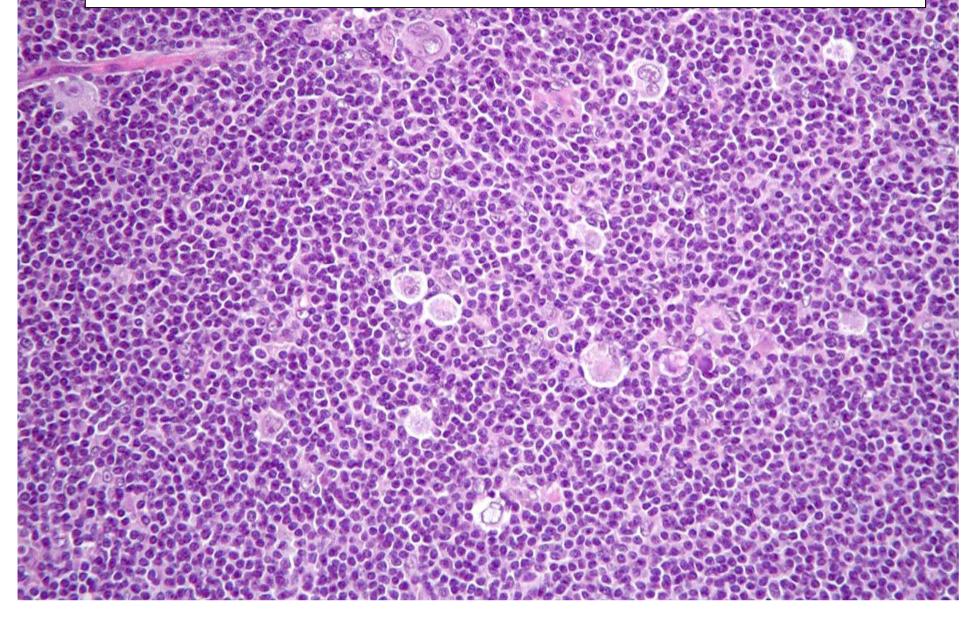
5th International Workshop on PET in Lymphoma Palais de l' Europe, Menton France September 19-20, 2014

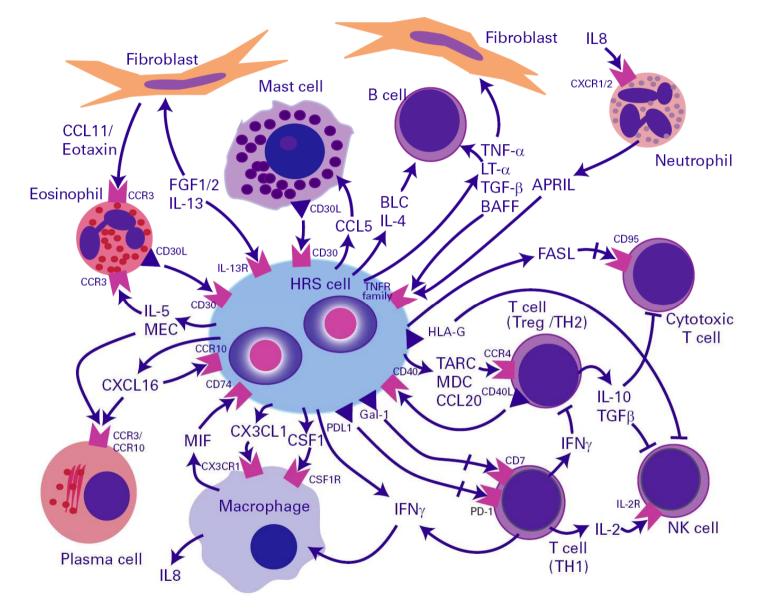

A clinical-pathological algorithm based on the combination of interim PET with biological markers in Classical Hodgkin Lymphoma

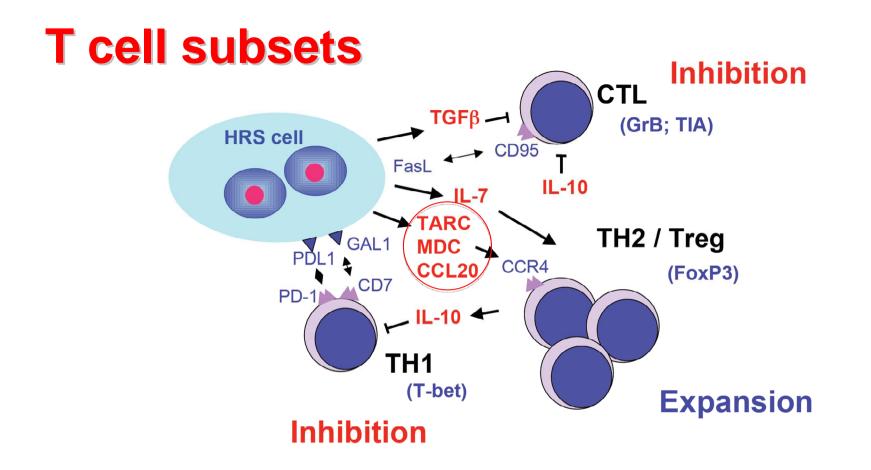




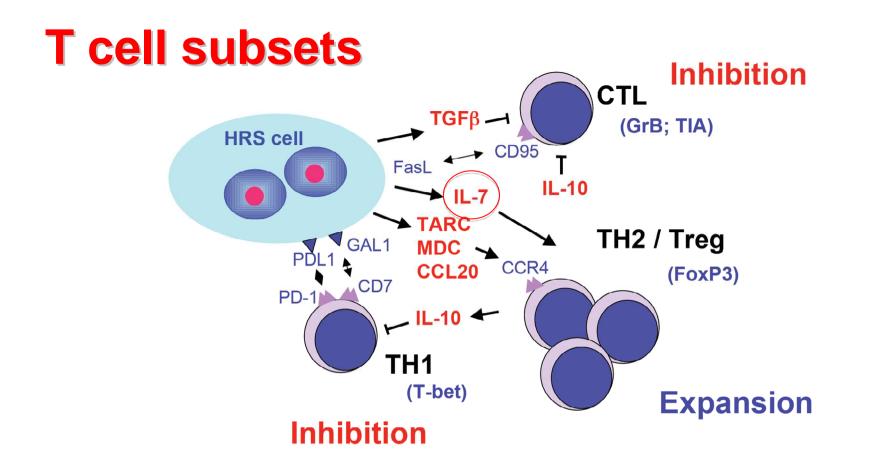
Classical Hodgkin Lymphoma


Classical Hodgkin Lymphoma is a monoclonal lymphoid neoplasm (in most instance derived from B cells) composed of mononuclear Hodgkin cells and multinucleated Reed-Sternberg cells

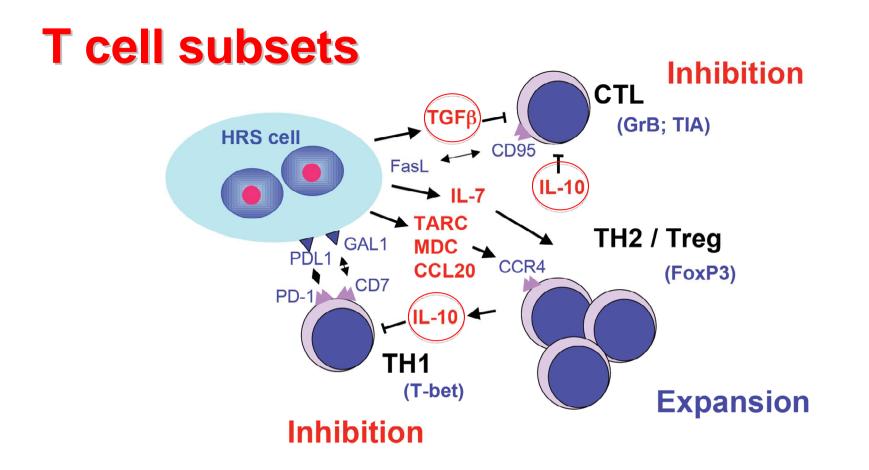



account for the vast majority of the tumor burden (usually more than 90%)

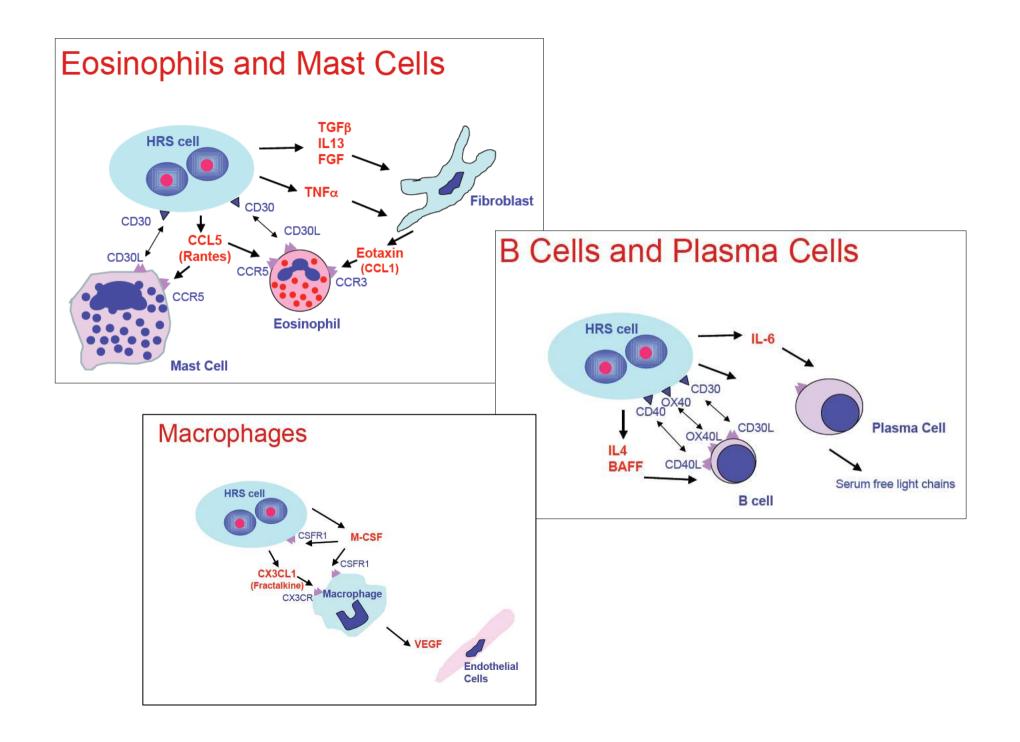
CHL: cross-talk between HRSCs and microenvironment

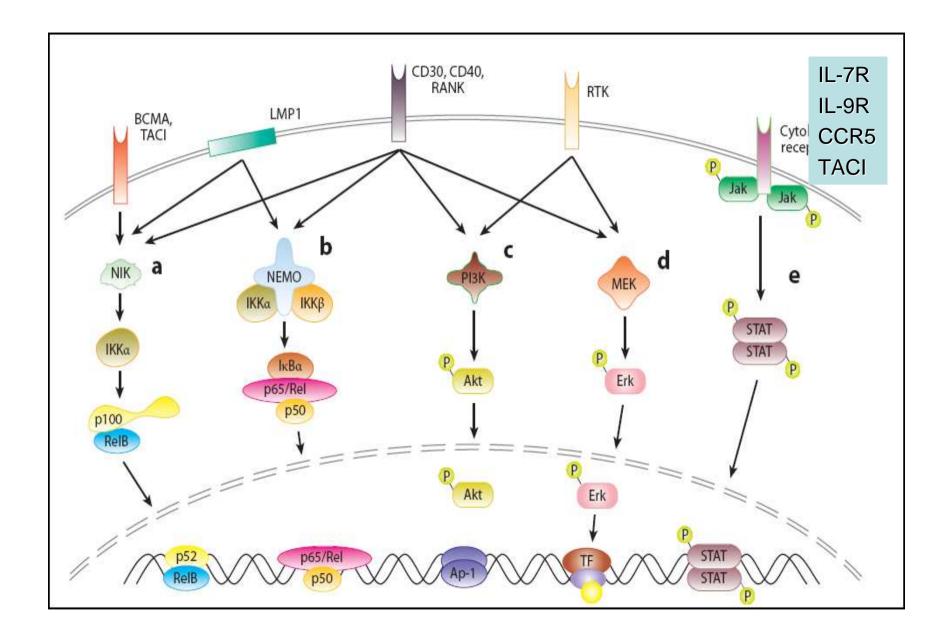


Steidl C, Connors JM, Gascoyne RD. JCO 2011, 29:1812-26


HRS cells produce chemokines

- which attract TH2 and Treg cells
- capable of inducing differentiation of CD4 naiveTcells toward FOXP3⁺ T-reg cells
- which exert inhibitory effects on T-cell effector functions, especially on cytotoxic T lymphocytes


HRS cells produce chemokines


- which attract TH2 and Treg cells
- capable of inducing differentiation of CD4 naiveTcells toward FOXP3⁺ T-reg cells
- which exert inhibitory effects on T-cell effector functions, especially on cytotoxic T lymphocytes

HRS cells produce chemokines

- which attract TH2 and Treg cells
- capable of inducing differentiation of CD4 naiveTcells toward FOXP3⁺ T-reg cells
- which exert inhibitory effects on T-cell effector functions, especially on cytotoxic T lymphocytes

Steidl C, Connors JM, Gascoyne RD. JCO 2011, 29:1812-26

	Immunohistochemistry							
Marker/Signature	Expressed on/Staining Pattern	Function	Outco	me Correlation	Reference No.			
Granzyme B	Cytotoxic T cells	Target cell lysis Adverse		PFS, OS)	133-137			
TIA-1	Cytotoxic T cells			EFS, OS)	136,138			
FOXP3	Regulatory T cells	Transcriptional regulation Favorabl		(EFS)	137-139			
CD20	Background B cells	B-cell differentiation	Favorable	(OS, EFS)	132,140			
BCL11A	Background B cells, plasmacytoid dendritic cells	Transcriptional regulation	Favorable	(OS, EFS)	140			
HLA-DR	HRS cells	Antigen presentation						
CD68, PNA	Macrophages	Scavenger receptor	Favorable	(FFS)	123			
ALDH1A1	Macrophages	Oxidative pathway/metabolism	Adverse (PFS, DSS)	132,141			
STAT1	Macrophages	Transcriptional activation	Adverse (DSS)	142			
EBV-encoded small RNAs	HRS cells	favora		n elderly patients, ile in young s (FFS, OS)	143-147			
MMP11	HRS cells, macrophages, endothelial cells, extracellular	Tissue remodeling Adverse		PFS)	132			
	Gene Expression Profiling							
	Main Gene Components	Outcome Correl	ation	Referen	ce No.			
Angiogenic signature	ADH1B, CD93, SRPX, PLA2G2A, GPR126	Adverse (primary treatme	ent failure)	132				
Adipocyte signature	GLUL, MGST1, COL1A2, FABP4	Adverse (primary treatment failure)		132				
Fibroblast function/extracellular matrix remodeling	Adverse: MMP2, MMP3, TIMP1, COL1A1, COL4A1, COL4A2, COL5A1, COL1BA1, COL16A1, MFAP2, THBS1/2, FN1, EDNRA, ITGB5, LAMA4; favorable: TIMP4, SPON1, LAMB1, TACR1, CCL26	(primary treatment outcome)		142,148				
B-cell signature	BCL11A, BANK1, STAP1, BLNK, FCER2, CD24, CCL21	Favorable (primary trea outcome)	Favorable (primary treatment outcome)					
Cytotoxic T-cell signature	CD3D, CD8B1, CTSL, CD26, SH2D1A, IFI16, RGS13, CR2, ELL3, CCDC23, PPM1L, TRA@, PIK3CA	Adverse (primary treatment outcome)		131,132,142				
Plasmacytoid dendritic cells	ITM2A, SRPX, CTSB, APP	Adverse (primary treatment outcome)		132				
Macrophage signature	ALDH1A1, LYZ, STAT1, ITGA4, CCL13, MS4A4A, CCL23, VCAN, HSP90AB3P, HSP90AB1, CTSB, CFL1, JMJD6, MAPK7, IKBKG, RAB7A, RXRA, MAPK13	Adverse (primary treatment outcome)		131,132,142				

Macrophages predict treatment outcome in Hodgkin's lymphoma

Christian Steidl, Pedro Farinha, and Randy D. Gascoyne

Departments of Pathology and Experimental Therapeutics, British Columbia Cancer Agency and the BC Cancer Research Centre, BC Cancer Agency, University of British Columbia, Vancouver, BC, Canada

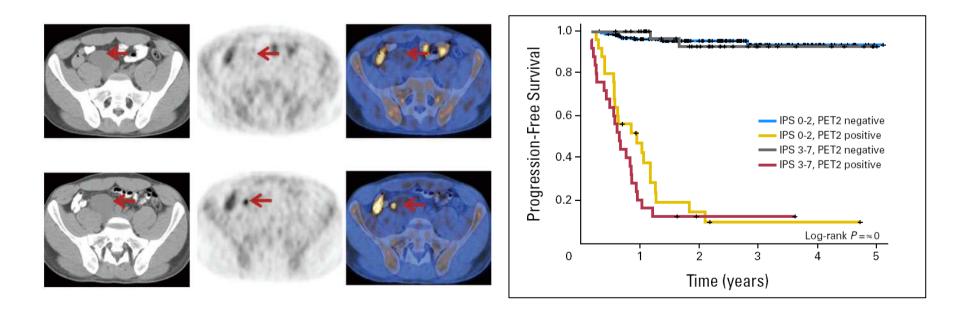
E-mail: rgascoyn@bccancer.bc.ca doi:10.3324/haematol.2010.033316

Haematologica 2010, 96:186-9

Markers used	Method	#	Outcome correlation	Reference
PNA	Histochemistry	43	Adverse (refractory disease, early relapse)	Ree <i>et al.</i> , Cancer 1985 ¹⁰
STAT1, ALDH1A1	GE, IHC	235	Adverse (disease-specific survival)	Sanchez-Aguilera <i>et al.</i> , Blood 2006 ¹¹
LYZ, STAT1, ALDH1A1	GE, IHC	194	Adverse (refractory disease, early relapse)	Sanchez-Espiridion <i>et al.</i> , Clincial Cancer Research 2009 ¹³
CD68	IHC	166	Adverse (progression-free survival, disease-specific survival)	Steidl et al., NEJM 20109
LYZ, STAT1	GE	262	Favorable (failure-free survival)	Sanchez-Espiridion et al., Blood 201012
CD68, CD163	IHC	288	Adverse (event-free survival, overall survival)	Kamper <i>et al.</i> , Haematologica 2011 ⁸
CD68	IHC	59	Adverse (refractory disease)	Benedicte <i>et al.</i> , Blood 2010 [abstr.] ³⁴
CD68 (also in combination with FOXP3)	IHC	122	Adverse (freedom from treatment failure, overall survival)	Greaves <i>et al.</i> , Blood 2010 [abstr.] ²⁵
CD68	IHC	144	Adverse (event-free survival, disease-specific survival)	Yoon et al., Blood 2010 [abstr.] ³⁵
CD68	IHC	105	Adverse (overall survival)	Tzankov et al. [personal communication]
CD68	IHC	45	Adverse (progression-free survival)	Hohaus & Larocca [personal communication]
CD68	IHC	153	Adverse (overall survival, progression-free survival)	Farinha <i>et al.</i> [abstr.] ³⁶

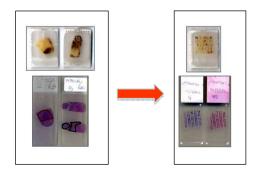
PNA: peanut agglutinin, GE: gene expression (mRNA), IHC: immunohistochemistry.

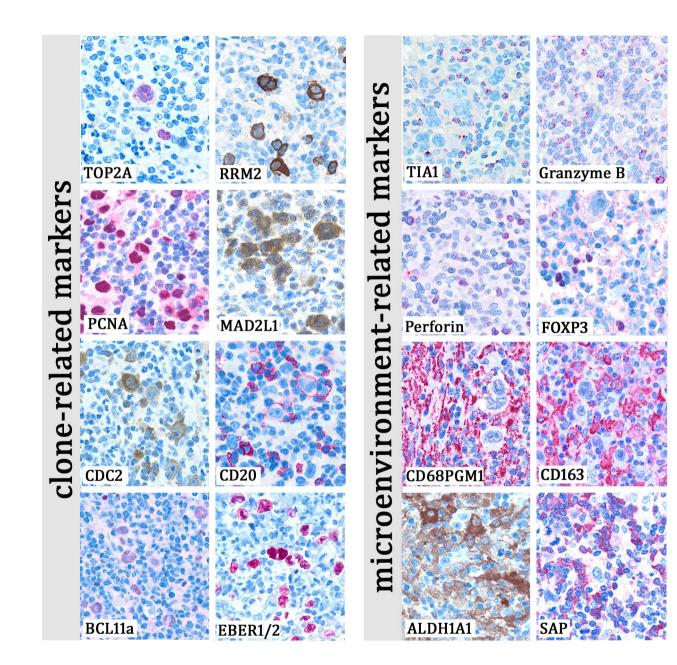
Interim PET (PET-2)


5%-12% PET2 negative pts experience a treatment failure VOLUME 25 · NUMBER 24 · AUGUST 20 2007

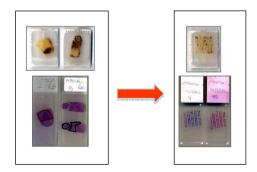
JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

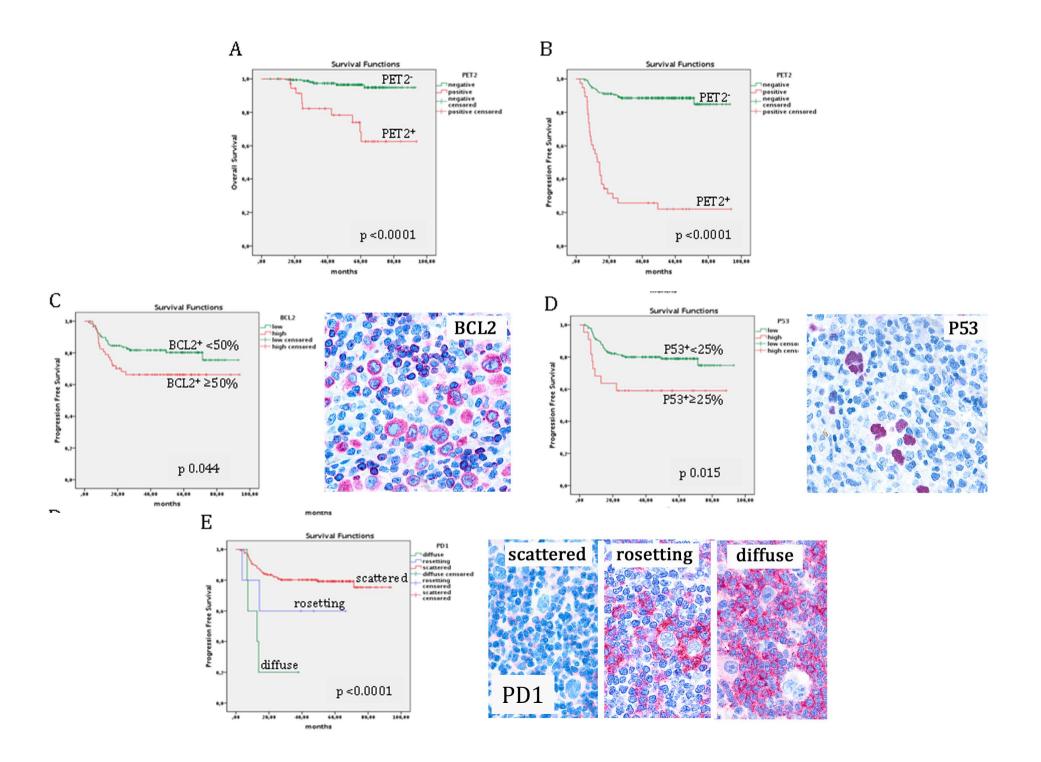

Early Interim 2-[¹⁸F]Fluoro-2-Deoxy-D-Glucose Positron Emission Tomography Is Prognostically Superior to International Prognostic Score in Advanced-Stage Hodgkin's Lymphoma: A Report From a Joint Italian-Danish Study

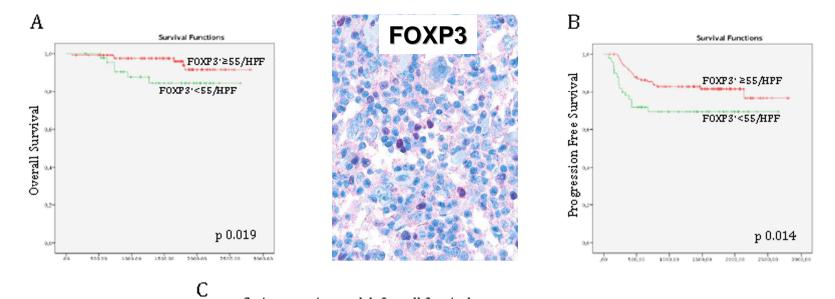

Andrea Gallamini, Martin Hutchings, Luigi Rigacci, Lena Specht, Francesco Merli, Mads Hansen, Caterina Patti, Amika Loft, Francesco Di Raimondo, Francesco D'Amore, Alberto Biggi, Umberto Vitolo, Caterina Stelitano, Rosario Sancetta, Livio Trentin, Stefano Luminari, Emilio Iannitto, Simonetta Viviani, Ivana Pierri, and Alessandro Levis

PET-2/Biologic Markers Study


- Biopsy samples from cHL patients at diagnosis enrolled by 11 Italian and 1 Danish medical institutions and Polish Lymphoma Research Group allied centers
- Construction of TMAs to collect cases of interest in the same block and optimization of immunohistochemical procedures
- We thoroughly investigated a wide set of biological markers, representative of diverse key aspects of cHL neoplastic and bystander cell biology : cell cycle regulatory proteins (TOP2A, RRM2, MAD2L1, CDC2, PCNA), B-cell ontogeny-related proteins (BCL11a, CD20), cell damage and apoptosis markers (P53, BCL2), EBV infection status, and on macrophages related markers (CD68, CD163, ALDH1A1, STAT1) and T-cell cytotoxicity (TIA1, Perforin, Granzyme B), regulation and suppression markers (FOXP3, PD1, SAP).
- Evaluation of the prognostic impact of such markers on Hodgkin's lymphoma outcome
- We challenged their prognostic/predictive power versus interim PET
- Construction of a predictive model of lymphoma recurrence

PET-2/Biologic Markers Study


- Biopsy samples from cHL patients at diagnosis enrolled by 11 Italian and 1 Danish medical institutions and Polish Lymphoma Research Group allied centers
- Construction of TMAs to collect cases of interest in the same block and optimization of immunohistochemical procedures
- We thoroughly investigated a wide set of biological markers, representative of diverse key aspects of cHL neoplastic and bystander cell biology : cell cycle regulatory proteins (TOP2A, RRM2, MAD2L1, CDC2, PCNA), B-cell ontogeny-related proteins (BCL11a, CD20), cell damage and apoptosis markers (P53, BCL2), EBV infection status, and on macrophages related markers (CD68, CD163, ALDH1A1, STAT1) and T-cell cytotoxicity (TIA1, Perforin, Granzyme B), regulation and suppression markers (FOXP3, PD1, SAP).
- Evaluation of the prognostic impact of such markers on Hodgkin's lymphoma outcome
- We challenged their prognostic/predictive power versus interim PET
- Construction of a predictive model of lymphoma recurrence



310 Patients: 208 pts + 102 pts

	Training set Test set		
	208 pt	102 pt	
Age			
mean	36	36	
median	32	31	
range	14-80	19-79	
Sex			
male	103 (49,5%)	52 (51,5%)	
female	105 (50.5%)	51(48,5%)	
Follow-up months			
mean	50.26	68.28	
median	52.30	68.1	
range	3-93	9.9-140.7	
Histologic subtype*			
cHL/nos	9 (9.1%)	3 (3%)	
NS/nos	9 (4.3%)	3 (3%)	
NS-cellular phase	9 (4.3%)	-	
NS-1	93 (44.7%)	44 (43.1%)	
NS-2	37 (17.9%)	13 (12.7%)	
NS-syncytial variant	8 (3.8%)	4 (3.9%)	
MC	29 (14%)	30 (29.4%)	
LR	1 (0.5%)	5 (4.9%)	
LD	3 (1.4%)	-	

	Training set	Test set
	208 pt	102 pt
Ann Arbor stage		
1	9 (4.3%)	6(5.9%)
IIA	68 (32,7)	18 (17,6)
IIB	49 (23,6)	15 (14,7)
ш	49 (23.6%)	26 (25.5%)
IV	33 (15.9%)	37 (36.3%)
Symptoms		
A	110 (53%)	38 (37%)
В	98 (47%)	64 (63%)
Bulky disease		
Yes	42 (20.1%)	42 (41%)
No	166 (79.9%)	60 (59%)
First-line treatment		
ABVD	208 (100%)	102 (100%)
RT	52 (25%)	43 (42%)
PET after two cycles		
Negative	170 (81.7%)	79 (77.5%)
Positive	38 (18.3%)	23 (22.5%)
Clinical outcome		
Failure	49 (23.6%)	22 (21.6%)
Death of disease	16 (7,7%)	4 (3,9)

Cox's regression model: Overall Survival

variable	Hazard Ratio of eventrisk	95% C.I for HR	р	
PET-2+	0.032	(0.04-0.274)	0.002	

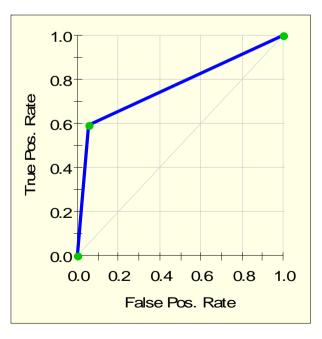
D

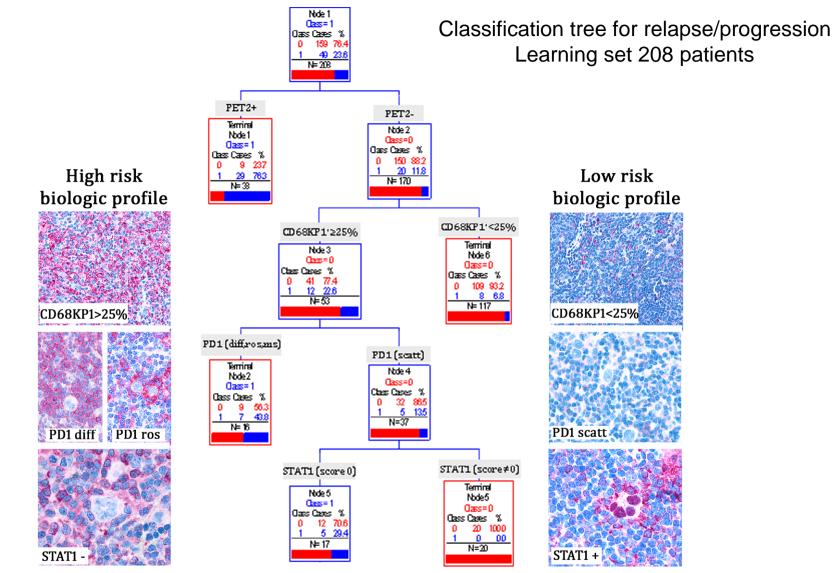
Ε

Cox's regression model: Progression Free Survival

variable	Hazard Ratio of 95% C.I for HR event risk		р
Stage II			0.001
Stage III	2.138	(1.756-2.522)	0.004
Stage IV	3.562	(3.235-3.888)	0.003
FOXP3 ^{high}	0,324	(0.147-0.715)	0.005
P53+	2,624	(1.043-6.579)	0.040
PET-2+	33.333	(13.513- 83.333)	0.000

Progression Free Survival after 5 years for different categories


Variable 🛛	Category	PFS
Stage	Stage=2	74.12%
Stage	Stage=3	59.46%
Stage	Stage=4	52.17%
FOXP3	Low:<55/HPF	58.83%
FOXP3	High:>55/HPF	76.34%
P53	Low: <25%	71.43%
P53	High: ≥25%	50.00%
PET2	Negative	83.33%
PET2	Positive	14.71%


Classification and Regression Tree (CART) analysis

Misclassification for Learn and Test Data

Class	N Cases	N Mis- Classed	Pct Error
0	150	8	5.33
1	49	20	40.82
Tot	199	28	14.07

low-risk class:

a) patients that, in addition to a negative PET-interim, had low values of CD68KP1 percentage < 25% ;

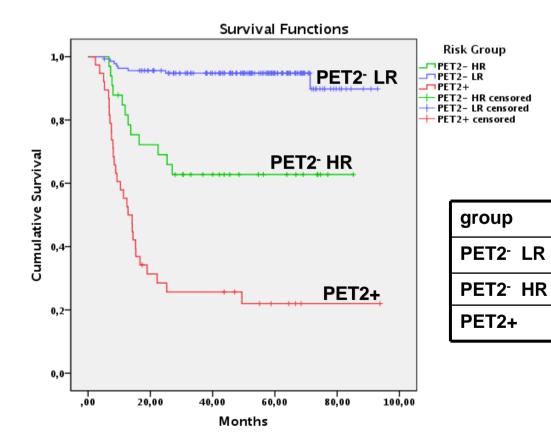
b) patients that, in addition to a negative PET-interim, and despite CD68KP1 ≥ 25%, had jointly scattered PD1 pattern and positive STAT1 in RCS; high-risk class:

a)patients that, despite a negative PET-interim, were characterised by CD68KP1 \ge 25% and

diffuse or rosetting PD1 pattern;

b) subjects that, despite a negative PET-interim, had jointly CD68KP1 ≥ 25%, scattered PD1 pattern and were negative for STAT1.

misclassification rates


Class	Pet-2 b	ased classif	ication		Pet-2 + biol	ogic markers	classificati	on scheme	
	scheme in learning set: 208 pts		Learning set: 208 patients 10-fold cross validation			Test set: 102 patients			
	of cases	misclass	rate (%)	of cases	misclass	rate (%)	of cases	misclass	rate (%)
0	159	9	5.66%	159	26	16.35%	80	10	12.50%
1	49	20	40.82%	49	11	22.45%	22	3	13.63%
total	208	29	13.94%	208	37	17.79%	102	13	12.74%

5 yrs PFS

94,7%

63,6%

23,7%

Conclusions

• none of the biologic factors evaluated could perform better than PET-2 in predicting outcome.

• a clinical-pathological algorithm based on the combination of PET-2 with some of the investigated biological markers, allowed the identification of poor prognosis patients that were misclassified by PET-2 alone.

Hematopathology section , Department of Experimental, Diagnostic and Specialty Medicine, Bologna, Italy:

Stefano A. Pileri , Claudio Agostinelli, Fabio Fuligni Pier Paolo Piccaluga, Maria Teresa Sista

Hematology section, Department of Experimental, Diagnostic and Specialty Medicine, Bologna, Italy Pier Luigi Zinzani, Alessandro Broccoli,

Lisa Argnani

Statistics Department, University of Bologna: Patrizia Agati , Luisa Stracqualursi

Nuclear Medicine Unit Bologna University, Italy: Stefano Fanti,

Nuclear Medicine Department, S. Croce e Carle Hospital, Cuneo, Italy: Alberto Biggi

Centre for Lymphoid Cancer and the Department of Lymphoid Cancer Research-BCCRC, British Columbia Cancer Agency, Vancouver, BC, Canada: Randy D. Gascoyne, Christian Steidl **Research and Statistic Department; Centre Antoine Lacassagne, Nice – France:** Andrea Gallamini,

Polish Lymphoma Research Group allied centers: Jan Macei Zaucha, Bogdan Małkowski, Waldemar Kulikowski, Joanna Tajer, Edyta Subocz , Justyna Rybka

Hematology Department, S. Croce e Carle Hospital, Cuneo, Italy: Francesca Fiore

Departments of Hematology and Pathology, Aarhus University Hospital, Aarhus, DK: Peter Kamper, Stephen Hamilton-Dutoit, Francesco D'Amore,

Intergruppo Italiano Linfomi: Umberto Vitolo, Luigi Rigacci, Francesco Merli, Caterina Patti1, Francesco Di Raimondo, Alessandro Levis, Livio Trentin, Caterina Stelitano,

Unità di Immunologia dei Tumori, Universtià di Palermo: Claudio Tripodo

C Agostinelli, PP Piccaluga, E Sabattini, F Bacci, C Sagramoso, M Rossi, S Righi, A Gazzola, T Sista, M Piccioli, MR Sapienza, C Mannu, F Sandri, P Artioli, G De Biase, F Fuligni, G Da Pozzo, C Tigrini, Prof SA Pileri