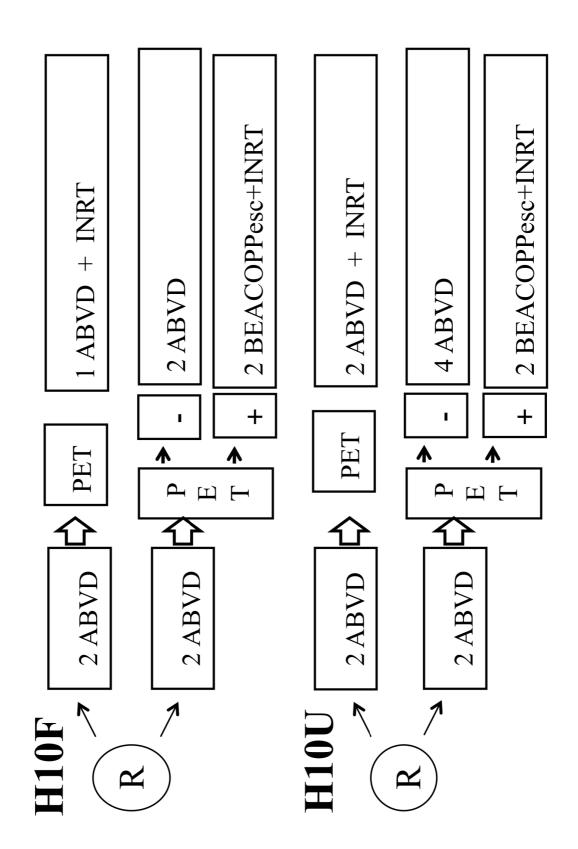


What did we learn from the H10 trial?


M. André

The H10 EORTC/LYSA/FIL randomized Intergroup trial on early FDG-PET scan guided treatment adaptation versus standard combined modality treatment in patients with supradiaphragmatic stage I/II Hodgkin's lymphoma.

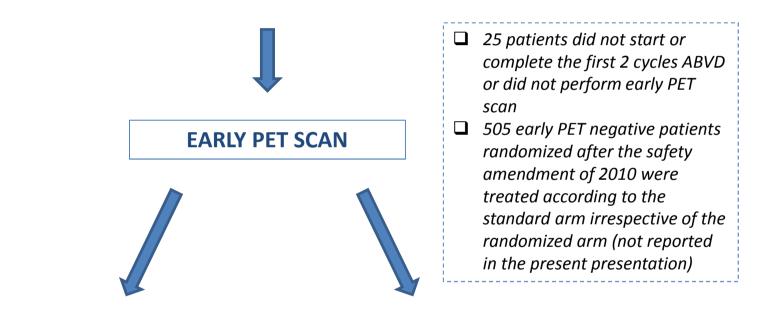


Figure 2. Progression-free survival according to interim-PET results using IHP criteria. Upper line negative interim-PET, lower line positive interim-PET. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Total randomized n=1950 (including n=30 not eligible)			
Standard Experimental			
Favorable	379		
Unfavorable	599		

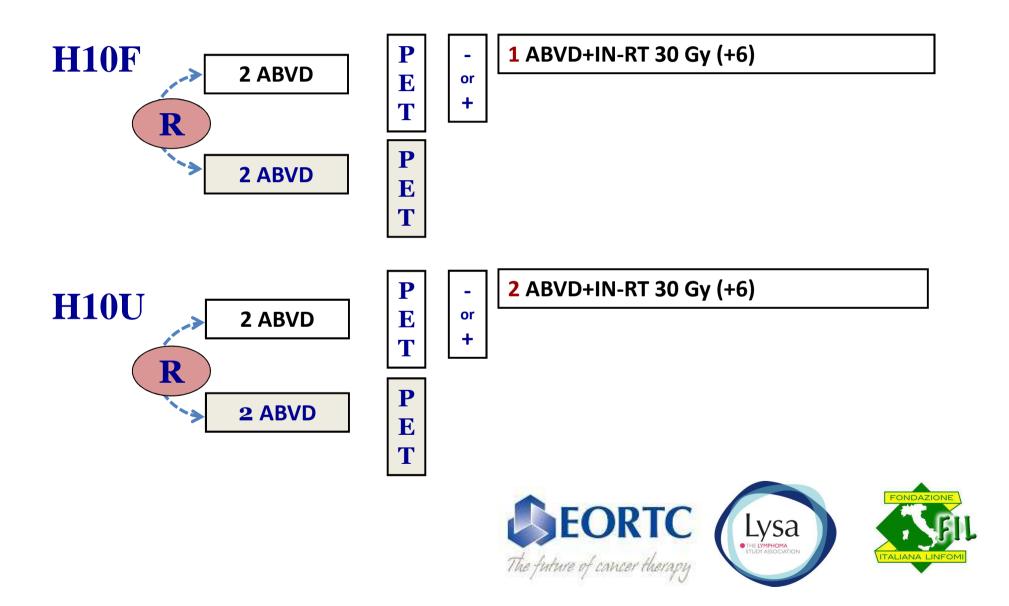
Early PET negative				
	Standard (ABVD+INRT)Experimental (ABVD only)			
Favorable	227	238		
Unfavorable	292	302		

Early PET positive			
StandardExperimental(ABVD+INRT)(BEACOPPesc +INRT)			
192	169		

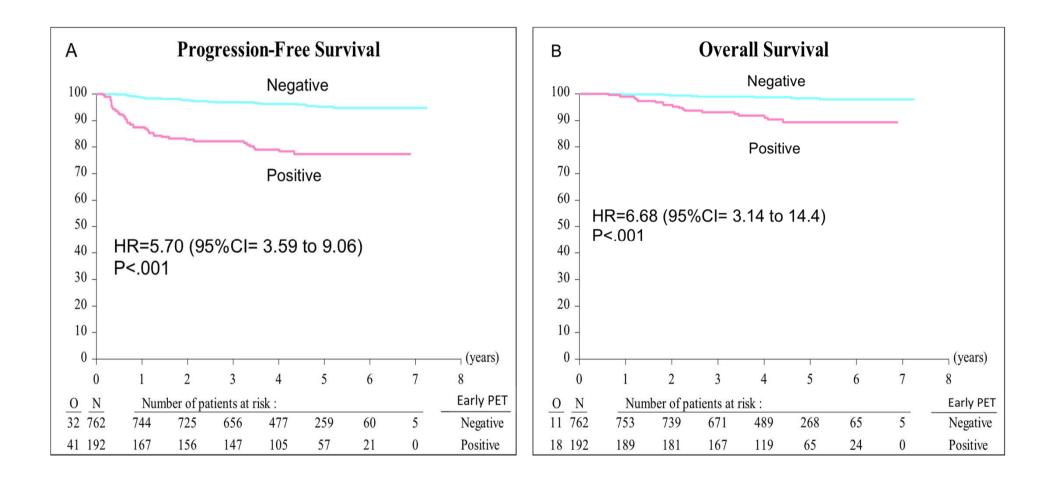
Main messages H10

- Early FDG-PET helps to define risk groups
- Early PET positive: treatment adaptation (BEACOPPesc) improves disease control
- Early PET negative patients: non-inferiority of no radiotherapy could not be demonstrated
- PET adapted strategy is warranted

Preview


• FDG-PET

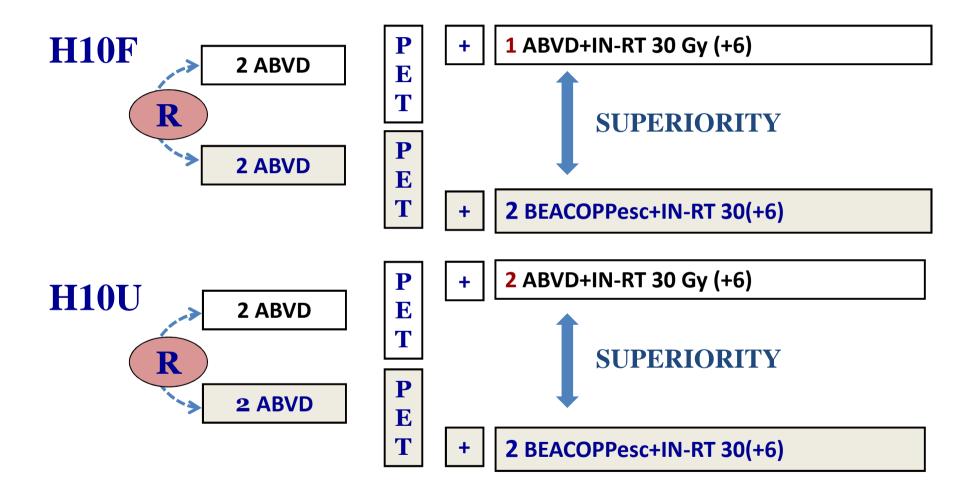
- PET positive
- PET negative


PET in H10

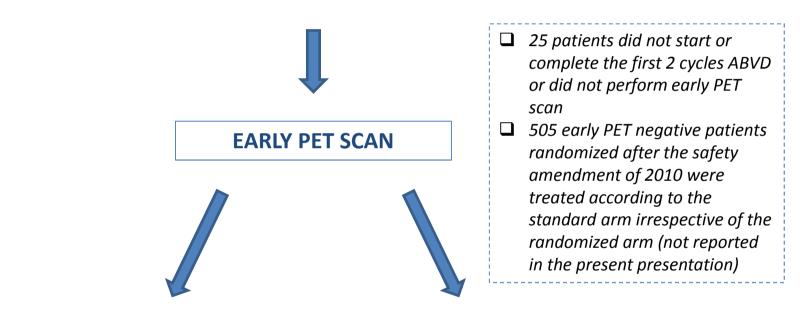
- 96% had a baseline PET
- IHP criteria
- Central review of 75% of patients
- 93% concordance with local assesment
- Cohen's kappa=0.78, 95%CI=0.74 to 0.82
- Early PET positivity was reported in 18.8%
 - 13.0% in F
 - 22.4% in U

H10 Study design

H10 : 954 randomised to ABVD + Radiotherapy, Early PET after 2 ABVD no treatment modification according to early PET



Preview


• FDG-PET

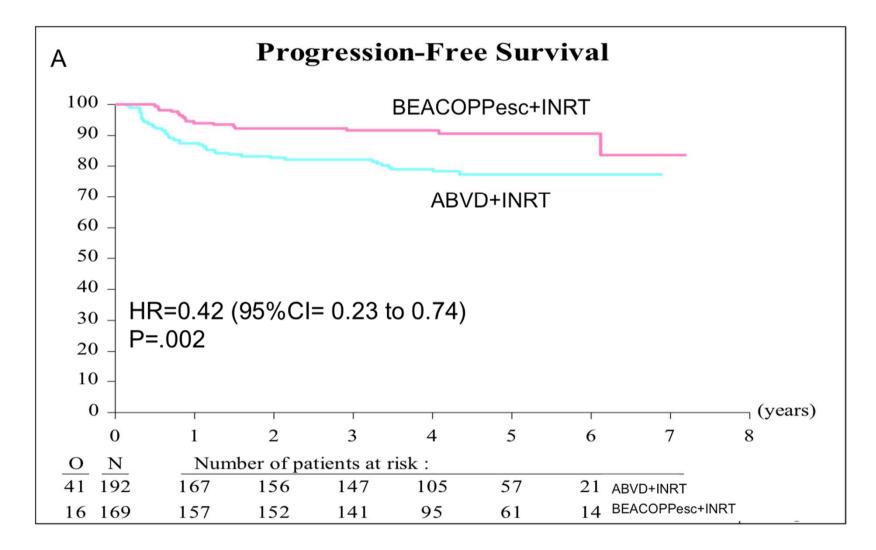
- PET positive
- PET negative

H10 Study design

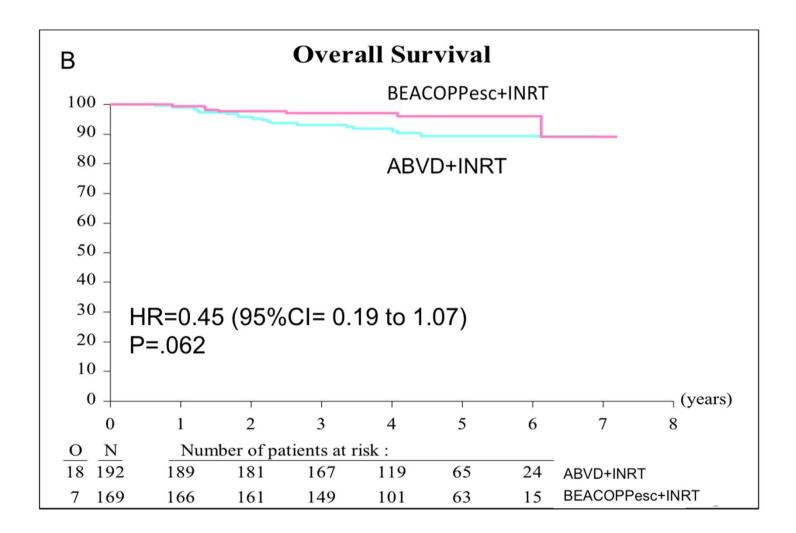
Total randomized n=1950 (including n=30 not eligible)			
Standard Experimental			
Favorable	379		
Unfavorable	599		

Early PET negative			
	StandardExperimental(ABVD+INRT)(ABVD only)		
Favorable	227	238	
Unfavorable	292	302	

Early PET positive			
StandardExperimental(ABVD+INRT)(BEACOPPesc +INRT)			
192	169		

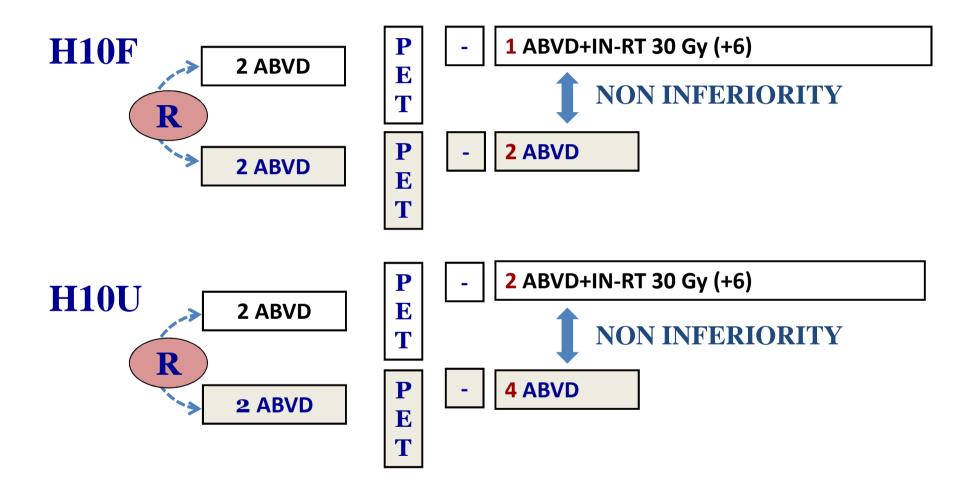

clinical characteristics N=361

	Std	Ехр
	ABVD+RT	BEACOPPesc+RT
	N=192	N=169
	N (%)	N (%)
Sex		
Male:Female ratio	51:49	56 : 44
Age years		
Median (range)	30.0 (15-66)	30.0 (15-70)
Age >60	9 (4.7)	11(6.5)
Treatment group		
Unfavorable	138 (71.9)	126 (74.5)
B-symptoms	67 (34.9)	63 (37.3)
Ann Arbor		
Stage II	144 (75.0)	136 (80.5)
Number of nodal areas		
Median (range)	2.0 (1-5)	2.0 (1-5)
Bulky mediastinum MT ratio>=0.35	71 (37.0)	69 (40.8)


PET+ group: ABVD *vs.* **BEACOPPesc Progression-free survival (intention-to-treat)**

	Std. ABVD+RT N=192	Exp. BEACOPPesc+RT N=169
	N (%)	N (%)
Progression/relapse	36 (18.8)	13 (7.7)
Death	5 (2.6)	3 (1.8)
PD/relapse or death, whichever first	41 (21.4)	16 (9.5)

H10: PET positive


H10: PET positive

Preview

- FDG-PET
- PET positive
- PET negative

H10 Study design

Total randomized n=1950 (including n=30 not eligible)			
Standard Experimental			
Favorable	379		
Unfavorable	599		

Early PET negative				
Standard Experimental (ABVD+INRT) (ABVD only)				
Favorable	227	238		
Unfavorable	292	302		

Early PET positive			
Standard (ABVD+INRT)	Experimental (BEACOPPesc +INRT)		
192	169		

Interim Analysis & IDMC conclusions (2010)

Based on the IA results, it is *unlikely* that the primary objective of the trial will be met, so:

 Unlikely that we could show the non-inferiority of the experimental arm

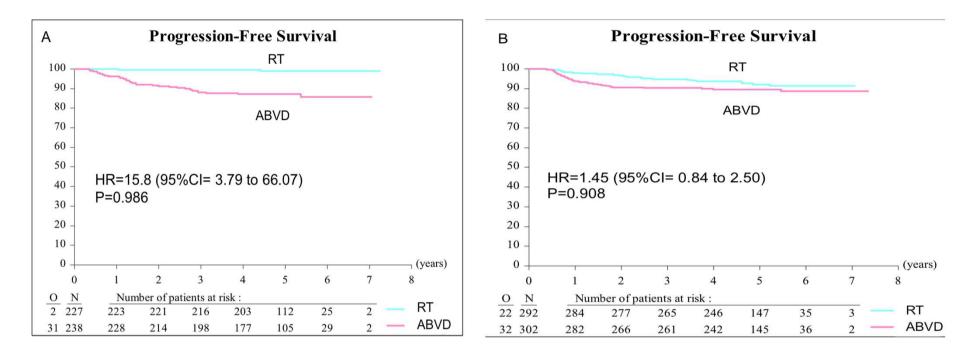
PET2 negative: futility analysis

VOLUME 32 · NUMBER 12 · APRIL 20 2014

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

Omitting Radiotherapy in Early Positron Emission Tomography–Negative Stage I/II Hodgkin Lymphoma Is Associated With an Increased Risk of Early Relapse: Clinical Results of the Preplanned Interim Analysis of the Randomized EORTC/LYSA/FIL H10 Trial

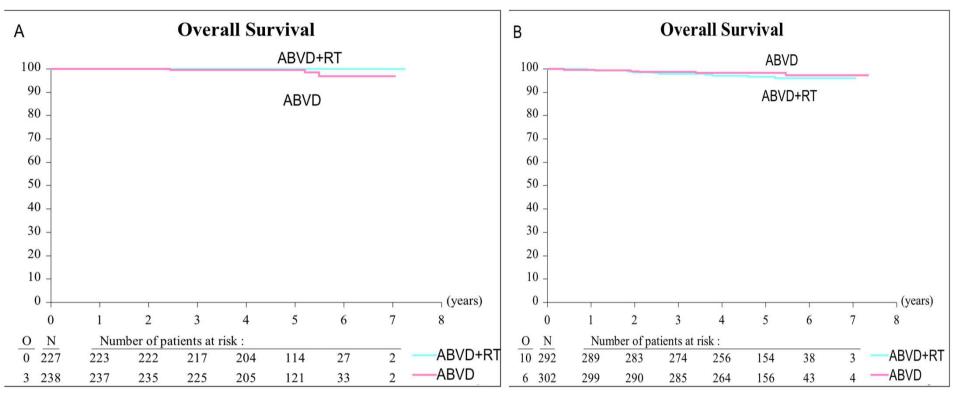

John M.M. Raemaekers, Marc P.E. André, Massimo Federico, Theodore Girinsky, Reman Oumedaly,

PET- group: ABVD+RT vs ABVD only Progression-free survival (intention-to-treat)

	F ABVD+RT N=227	F ABVD only N=238	U ABVD+RT N=292	U ABVD only N=302
	N (%)	N (%)	N (%)	N (%)
Progression/rel apse	2 (0.9)	30 (12.6)	16 (5.5)	30 (9.9)
Death	0 (0.0)	1 (0.4)	6 (2.1)	2 (0.7)
PD/relapse or death,	2 (0.9)	31 (13.0)	22 (7.5)	32(10.6)

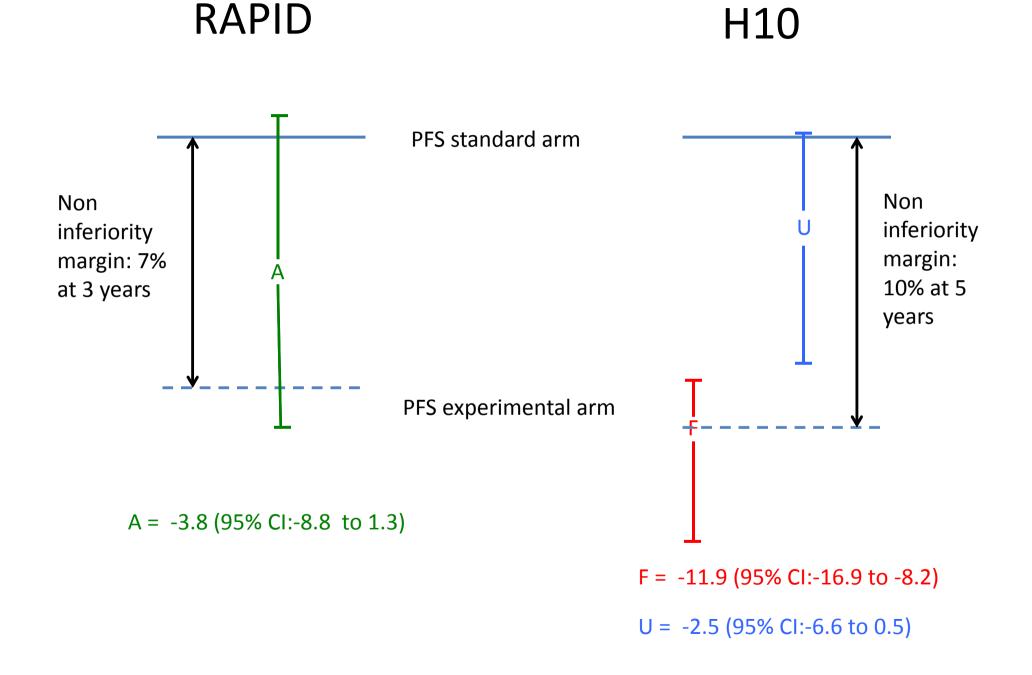
favorable group

unfavorable group


The final result of H10 confirmed the published results of the interim analysis: Non inferiority could not be demonstrated.

Non-inferiority is concluded if the upper bound of the 95% confidence interval for the estimated hazard ratio does not exceed the non-inferiority margin.

```
F group: HR < 3.2
U group: HR < 2.1 (upper bound is 2.5)
```


Favorable

Unfavorable

OS rates at 5 years were similar; 100.0% vs 99.6% in the ABVD+RT and ABVD arm

OS rates at 5 years were similar; 96.2% vs 98.1 % in the ABVD +RT and ABVD arm

	PET NEGATIVE N=1059			PET POSITIVE N=361		
	Favorable N=465		Unfavorable N=594		Favorable and Unfavorable	
	ABVD +INRT N=227	ABVD only N=238	ABVD +INRT N=292	ABVD only N=302	ABVD +INRT N=192	BEACOPPesc +INRT N=169
	Ν	Ν	Ν	Ν	Ν	Ν
Second malignancies	3	7	10	10	5	4
Deaths	0	3	10	6	18	7
Progression/relapse	0	0	3	3	11	3
Toxicity of protocol	0	0	0	1	0	1
treatment						
Toxicity of second line treatment	0	1	1	0	3	0
Cardio-vascular event	0	0	2	0	0	0
Second malignancy	0	2	2	1	2	1
Other/unknown	0	0	2	1	2	2

Median Fup: PET negative: 5 years, PET positive: 4.5 years.

Review

- Early PET defines 2 risk populations in stage I-II
- Early PET positive:
 - BEACOPP improves PFS
 - OS is of borderline significance
- Early PET negative:
 - H10 failed to demonstrate non inferiority of PFS in no RT arm
 - In U group: the benefit of CMT appears less clinically relevant and challenges the use of radiotherapy.
 - Outcome (OS) w/wo RT is excellent
 - Impact on late toxicities is unknown

Conclusions

- Early FDG-PET is a tool to define a risk adapted strategy and should become SOC
- Early PET positive: early intensification (BEACOPPesc) should be considered as the best treatment option.
- Early PET negative patients: no radiotherapy is an option at the price of some reduction of disease control (U group)
- PET adapted strategy is warranted for early stage HL

Study coordination team

, T. Girinsky EORTC é, O. Reman LYSA	Study coordinators J. Raemaekers, T. Girinsky M. André, O. Reman M. Federico, E. Brusamolino†
	RT committee B. Aleman, R. vd Maazen, P. Meijnders, L. Specht, T. Girinsky U. Riccardi
tatistician C. Fortpied EORTC	<i>Central statistician</i> C. Fortpied
0	Clinical Research Physician S. Marréaud, V. Fiaccadori
veloarivahy EORTC A. Zarour LYSA	Central data management T. Raveloarivahy A. Zarour M. Bellei, S. Badiali, A. Dondi

Acknowledgements

• Back-up slide

The preset non-inferiority margins were defined in terms of hazard ratios (HRs), according to standard statistical methodology for time-to-event endpoints. They were calculated from the clinically accepted decrease of 10% in PFS rate at 5 years, assuming exponentially distributed survival times. However, one may question whether the proportional hazard assumption is valid in this particular setting and therefore whether the hazard ratio is an adequate measure to compare two treatments. Violation of the proportional hazard assumption explains why we obtained an apparently paradoxical result in the U group, as non-inferiority could not be concluded while the observed difference in PFS rate at 5 years was not clinically relevant (2.5%).