Peripheral T-cell Lymphomas Clinical Presentation and New Drugs

Barbara Pro, MD

6th International Workshop on PET in Lymphoma Menton, September 20-21, 2016

T-Cell Lymphomas...Few Facts

- Accounts for ~10%-15% of all NHL
- Increasing number of subtypes
- Classification relies on
 - Morphology
 - Immunophenotype
 - Clinical/anatomical presentation
- Few recurrent genetic or molecular lesions
- Expert hematopathology review essential
- Outcomes are often poor

WHO 2008 Classification of PTCLs

Adapted from Swerdlow SH, et al. WHO Classification of Tumours of Haematopoietic and

6th International Workshop on PET in Lymphoma Menton- September 20-21, 2016

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

International Peripheral T-Cell and Natural Killer/T-Cell Lymphoma Study: Pathology Findings and Clinical Outcomes

56% NODAL SUBTYPES

	%						
Subtype	North America	Europe	Asia				
PTCL-NOS	34.4	34.3	22.4				
Angioimmunoblastic	16.0	28.7	17.9				
ALCL, ALK positive	16.0	6.4	3.2				
ALCL, ALK negative	7.8	9.4	2.6				
NKTCL	5.1	4.3	22.4				
ATLL	2.0	1.0	25.0				
Enteropathy-type	5.8	9.1	1.9				
Hepatosplenic	3.0	2.3	0.2				
Primary cutaneous ALCL	5.4	0.8	0.7				
Subcutaneous panniculitis-like	1.3	0.5	1.3				
Unclassifiable T-cell	2.3	3.3	2.4				

Vose J, et al. 2008;26:4124-4130

6th International Workshop on PET in Lymphom Menton- September 20-21, 2016

Armitage J, et al. J Clin Oncol. 2008;26:4124–4130, International T-cell Classification Project

PTCLs: Guidelines for Initial treatment

Suggested regimens:

- CHOP (cyclophosphamide,doxorubicin,vincristine,prednisone)
- CHOEP(cyclophosphamide,doxorubicin,vincristine,etoposide, prednisone)
- HyperCVAD (cyclophosphamide,doxorubicin,vincristine,dexamethasone)

alternating with methotrexate and cytarabine

- CHOP followed by ICE (ifosfamide, carboplatin, etoposide) or
- IVE (ifosfamide, etoposide, and epirubicin) alternating with intermediate dose methotrexate (New Castle Regimen)
- Dose adjusted EPOCH

NCCN guidelines: Clinical trials preferred with the exception of ALK + ALCL

International Workshop on PET in Lymphom Menton-September 20-21, 2016

Historical data with CHOP?

Selected Studies

Reference	Treatment	Histology	N	OR R	CR	PFS / EFS
Savage KJ,	Almost all	DTCLUS	11	<u>8104.</u>	64%	29%
et al.	♦ORR 6	50-80%				(5 yr)
	♦CR 39	-60%				(3 yr)
	◆Lack					
	remis					
Reimer P, et		1101(32)	00	12/0	39%	ASCT
al.	CT,	/ AITL /				
	Prospective	ALCL				
Simon KJ, et	CHOP vs	PTCL (30)	43	62%	39%	41% (2
WP-rABVD, etop					co(rBETCI)L	yr)
bleomycin, vinbla Savage KJ, et al	asting, dagarbazi	nALVIH-reinford	ed-AE	VD).	29%)	"Lower
Savage KJ, et al Oncol. 2009;27(Ann Oncol. 200 Prosnactive	4;15(10):1467-1	475; 1	Reimer I	P, et al. <i>J</i> C	lin for
Simon A, et al. E		13;151(2):159-1	66.			PTCL

Novel Approaches

Adding to CHOP..... ABMT for Consolidation

International Workshop on PET in Lymphoma Menton- September 20-21, 2016

Adding Etoposide to CHOP: German Prospective High-Grade NHL Studies

Up-Front Autologous Stem-Cell Transplantation in Peripheral T-Cell Lymphoma: NLG-T-01

Francesco d'Amore, Thomas Relander, Grete F. Lauritzsen, Esa Jantunen, Hans Hagberg, Harald Anderson, Harald Holte, Anders Österborg, Mats Merup, Peter Brown, Outi Kuittinen, Martin Erlanson, Bjørn Østenstad, Unn-Merete Fagerli, Ole V. Gadeberg, Christer Sundström, Jan Delabie, Elisabeth Ralfkiaer, Martine Vornanen, and Helle E. Toldbod

ORIGINAL REPORT

6th International Workshop on PET in Lymphom Menton- September 20-21, 2016

Clinical case

64 y/o male Stage IIIA T cell lymph Favor "PTCL-NOS" CHOEP X 3 cycles PET/CT : CR 2 additional cycles of (

PFS and OS after 1st relapse in PTCL

Mak V et al. JCO 2013;31:1970-1970

6th International Workshop on PET in Lymphoma Menton- September 20-21, 2016

Targeting Peripheral T-Cell Lymphoma

¹ International Workshop on PET in Lymphoma Menton- September 20-21, 2016

Targeting Peripheral T-Cell Lymphoma

th International Workshop on PET in Lymphoma Menton-September 20-21, 2016

Summary of Selected Novel agents

Agent	MOA	Phas	Patients	Toxicity (grade	ORR	CRR	DOR
		е	(n)	3 or>)			(months)
FDA approved							
Pralatrexate	Folate antagonist	II	111	Mucositis	29%	11%	10.3
Romidepsin	HDACi	II	130	Thrombocytope nia Neutropenia Infections	25%	14%	17
Belinostat	HDACi	П	129	Hematologic	26%	11%	8
Brentuximab	ADC	II	58	Neuropathy	86%	57%	12.6
Agents Under	Investigations					·	
Mogamulizu mab	Anti-CCR4 mAb	II	37	Neutropenia,ras h	34%	17%	8.2
Alisertib	Aurora A KI	II	37	Hematologic, FN	24%	5%	NR
Duvelisib	РІЗКІ	I	33	Transaminitis,ra sh Neutropenia	47%	12%	NR
Crizotinib	ALKi	II	9		100 •⁄	100%	2-yr PFS 64%

Classes of HDACi are based on chemical

structure

Cyclic te

Romidepsin

Hydroxamates

- Vorinostat (SAHA)
- Panobinostat (LBH589)
- Belinostat (PXD101)

Benzamides

- Entinostat (SNDX-275)
- MGCD-0103

-Not all HDACi have the same specificity or affinity for the 11 different target HDACs

Impact on **multiple tumor pathways** by targeting both histone *and* non-histone substrates

Bolden et al., Nat Rev Drug Discovery. 2006; **5**, 769.

Romidepsin-Pivotal Study-

- **Design** Phase 2, open-label, single-arm, international study
 - N = 131 patients enrolled; 130 with histopathologically confirmed PTCL
 - Dosing: romidepsin 14 mg/m² (4-hour intravenous infusion) on days 1, 8, and 15 of a 28-day cycle × 6 cycles
 - Patients with SD or response could continue to receive treatment beyond 6 cycles at discretion of patient and

Efficacy of Romidepsin in AITL

International Workshop on PET in Lymphoma Menton- September 20-21, 2016

Targeted Therapy in ALCL Targeting CD30

Targeting CD30 Brentuximab Vedotin

Pivotal Phase II Study Adde Term Follow-

Best Response (N=58)

	IRF*	Investigator
Objective response rate	50 (86)*	50 (86)
Best response		
Complete remission (CR)	34 (59) 🔸	38 (66)
Partial remission (PR)	16 (28)	12 (21)
Stable disease (SD)	2 (3)	4 (7)
Progressive disease (PD)	3 (5)	2 (3)
Histology ineligible (HI)	2 (3)	0 (0)
Not evaluable (NE)	1 (2)	2 (3)

* Primary endpoint

Future directions:

Role in CD30 + PTCL Combination therapy in R/R setting Maintenance vs retreatment Frontline Thera_____ECHELON 2

48 (10) 41 (17) 37 (20) 36 (21) 36 (21) 35 (21) 32 (21) 21 (21) 6 (21) 0 (22)

Pro et al. ASH Dec 2014, Abstract 3095

Case study

- 48-year-old male, ALK+ sALCL
- Prior treatment:
 - CHOP
 - VAPEC B
 - ASCT
- Cycle 4 restaging: CR
- Patient experienced tumor lysis syndrome after first dose, recovered
- Patient received 8 cycles in total

Pro B et al. J Clin Oncol 2012;30:2190–6. Reprinted with permission. © 2012 American Society of Clinical Oncology. All rights reserved.

PFS and OS by cycle 4 PET status and ALK status

Status	4-yr PFS (95% Cl)	4-yr OS (95% Cl)	
PET4 status			
PET+ (n=20)	16% (0%, 32%)	50% (28%, 72%)	
PET- (n=28)	63% (44%, 83%)	86% (72%, 99%)	
ALK status			
ALK+ (n=16)	37% (11%, 62%)	56% (32%, 81%)	tract 3095
ALK- (n=42)	38% (22%, 54%)	67% (52%, 81%)	

6th International Workshop on PET in Lymphoma Menton- September 20-21, 2016

Targeted Therapy in ALCL Targeting ALK

Crizotinib

- 11 ALK+ relapsed NHL patients (9 ALCL)
 - Median of 3 prior therapies
 - Clinical responses in 10 of 11
 - All 9 ALCL pts achieved complete remissions lasting 2-40+ months
 - Negative for NPM/ALK by PCR
 - 2 -yr PFS 64%
 - Non-cross resistant with brentuximab

Ongoing PHASE I-II study in combination with chemotherapy in untreated patients

Gambacorti Passerini et al. J. Natl. Cancer In:

^h International Workshop on PET in Lymphom Menton, September 20-21, 2016

Targeting PI3K PI3K-δ and PI3K-γ Support the Growth and Survival of B-cell and T-cell Malignancies

Duvelisib (IPI-145) Phase 1 Study

MTD reached at 75 mg BID

- •2 dose limiting toxicities (DLTs) at 100 mg BID:
 - Gr 3 rash; Gr 3 ALT/AST elevation
 - Limited myelosuppression, rare pneumonitis

Clinical Activity in TCL

Populati		Ве	Median Time to				
on	n	CR	PR	SD	PD	ORR	Response , months (Range)
All TCL			12 (36)	7 (21)	12 (36)	14 (42)	1.9 (1.5, 3.8)
PTCL	15	2 (13)	6 (40)	1 (7)	6 (40)	8 (53)	1.9 (1.5, 3.5)
CTCL	18	0	6 (33)	6 (33)	6 (33)	6 (33)	2.4 (1.6, 3.8)

- Clinical activity observed across PTCL and CTCL subtypes
 - PTCL: CRs in 1 EATCL and 1 PTCL NOS

PRs in 2 AITCL, 2 SPTCL, 1 PTCL NOS, 1 ALCL (ALK-negative)

- CTCL: PRs in 4 MF, 1 Sézary syndrome, and 1

¹ International Workshop on PET in Lymphom Menton- September 20-21, 2016

Early Pharmacodynamic Response in PET Avid Disease May Predict Best Clinical Response

• Below: CT scans from a 71 year-old woman with relapsed AITCL. Prior therapies: rituximab (ITP), CHOP, pralatrexate, vorinostat, brentuximab vedotin

- 10 patients evaluated with PET (PET-CT) at Cycle 1 Day 22, 6 with a reduction in SUV, 4 with an increase in SUV
- 83% (5/6) with PET response had a subsequent clinical response (CR or PR)
- 100% (4/4) without PET response had disease progression

Horwitz S. et al, ASH 2014 Abstrac

Crizotinib

- 11 ALK+ relapsed NHL patients (9 ALCL)
 - Median of 3 prior therapies
 - Clinical responses in 10 of 11
 - All 9 ALCL pts achieved complete remissions lasting 2-40+ months
 - Negative for *NPM/ALK* by PCR
 - 2 -yr PFS 64%
 - Non-cross resistant with brentuximab

Ongoing PHASE I-II study in combination with chemotherapy in untreated patients

Gambacorti Passerini et al. J. Natl. Cancer In:

^h International Workshop on PET in Lymphom Menton, September 20-21, 2016

ישטווע דטו waru.... Targeted Therapy i סדכו כ

P-T-Subtype-specific treatments

Combinations needed to improve CR rate for most

Consolidation

• If no transplant maintenance strategy?

Curr Hematol Malig Rep DOI 10.1007/s11899-015-0291-0

T-CELL AND OTHER LYMPHOPROLIFERATIVE MALIGNANCIES (P PORCU, SECTION EDITOR)

The Value and Relevance of the T Cell Lymphoma Registries and International Collaborations: the Case of COMPLETE and the T-Cell Project

Monica Bellei¹ • Chadi Nabhan² • Emanuela Anna Pesce¹ • Luana Conte³ • Julie M. Vose⁴ • Francine Foss⁵ • Massimo Federico¹

