### PET negative Residual Masses

#### **RECOMMENDATIONS: RESPONSE ASSESSMENT - VISUAL**

- <sup>1.</sup> The Deauville criteria (DC) are recommended for reporting PET scans at interim and end treatment assessment when using visual assessment of response *(category 1).*
- <sup>2.</sup> If mid chemotherapy assessment is performed, PET-CT is the best imaging modality and is superior to CT alone *(category 1).*
- <sup>3.</sup> There is currently insufficient evidence to change standard treatment based solely on interim PET-CT outside clinical trials. Imaging findings on interim scans should be related to the anticipated prognosis, clinical findings and other markers of response *(category 1).*
- <sup>4.</sup> Further investigation of the significance of PET negative residual masses is warranted (*category 3*). Data should be collected prospectively in clinical trials dividing CR into two categories: Complete Metabolic Response (CMR) and Complete Metabolic Response with a residual mass (CMRr) (*category 3*). Residual mass size should be recorded on end of treatment PET-CT report

Further investigation of the *significance* of PET negative residual masses is warranted (*category 3*).

Data should be collected prospectively in clinical trials dividing CR into two categories: Complete Metabolic Response (CMR) and Complete Metabolic Response with a residual mass (CMRr) (category 3).

Residual mass size should be recorded on end of treatment PET-CT report.

### Rationale

- PET improved characterisation of residual CT masses (PET+ vs PET-).
- Some data suggests that: PET- / CT- do better than PET- / CT+ (i.e. PET negative residual mass)
- Some other data suggests no difference
- Significance of residual mass may be disease & treatment specific.
- Needs further Ix, hence CMRr designation.

### Supplementary slides

# Relevance of PET negative residual CT masses

### PET in Lymphoma residual masses

- One of the earliest established indications for PET in response assessment
- First funded indication in USA
- NPV 80-90%
- Transformed response assessment
- Removed CR(u)

### Adding PET to IWC for response

Table 3. Concordance of Response Designations Between IWC and IWC+PET (n = 54)

| Response    |    | IWC+PET |    |    |    |            |  |  |
|-------------|----|---------|----|----|----|------------|--|--|
| Designation | CR | CRu     | PR | SD | PD | Total      |  |  |
| IWC         |    |         |    |    |    | $\bigcirc$ |  |  |
| CR          | 17 | 0       | 0  | 0  | 0  | 17         |  |  |
| CRu         | 5  | 0       | 2  | 0  | 0  | 7          |  |  |
| PR          | 10 | 0       | 9  | 0  | 0  | 19         |  |  |
| SD          | 2  | 0       | 1  | 6  | 0  | 9          |  |  |
| PD          | 1  | 0       | 0  | 0  | 1  |            |  |  |
| Total       | 35 |         | 12 | 6  |    | 54         |  |  |

Abbreviations: IWC, International Workshop Criteria; IWC+PET, IWC plus positron emission tomography; CR, complete response; CRu, unconfirmed complete response; PR, partial response; SD, stable disease; PD, progressive disease.

Juweid et al JCO 2005; 23 (21): 4652

### Is IWC+PET better?



Fig 3. Progression-free survival by International Workshop Criteria (IWC) and IWC plus positron emission tomography (PET) based on the Kaplan-Meier method. (-----) Complete response (CR) by IWC (n = 17); (-----) CR by IWC+PET (n = 35); (-----) partial response (PR) by IWC (n = 19); (-----) PR by IWC+PET (n = 12); (|) censored observations.

Juweid et al JCO 2005; 23 (21): 4652

### Revised IWC (Cheson JCO 2007)

Table 2. Response definitions for clinical trials

| Response                           | Definition                                                                       | Nodal masses                                                                                                                                                                                                                                                      | Spleen, liver                                                                                                                           | Bone marrow                                                                                                             |
|------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Complete remission (CR)            | Disappearance of<br>all evidence of disease                                      | <ul> <li>(a) FDG avid or PET+ before<br/>therapy: mass of any size<br/>permitted if PET-;</li> <li>(b) variably FDG avid or<br/>PET-: regression to normal<br/>size on CT</li> </ul>                                                                              | Not palpable,<br>nodules disappeared                                                                                                    | Infiltrate cleared on repeat<br>biopsy, if indeterminate<br>by morphology<br>immunohistochemistry<br>should be negative |
| Partial remission (PR)             | Regression of measurable<br>disease and no new sites                             | ≥50% decrease in SPD of up<br>to six largest dominant<br>masses, No increase in size<br>of other nodes                                                                                                                                                            | ≥50% decrease in SPD of<br>nodules (for single nodule<br>in greatest transverse<br>diameter), no increase in<br>size of liver or spleen | Irrelevant if positive before<br>therapy, cell type should<br>be specified                                              |
|                                    |                                                                                  | <ul> <li>(a) FDG avid or PET+ before<br/>therapy: one or more PET+<br/>at previously involved site;</li> <li>(b) variably FDG avid or<br/>PET-: regression on CT</li> </ul>                                                                                       |                                                                                                                                         |                                                                                                                         |
| Stable disease (SD)                | Failure to attain<br>CR/PR or PD                                                 | <ul> <li>(a) FDG avid or PET+ prior<br/>to therapy: PET+ at prior<br/>sites of disease and no new<br/>sites on CT or PET;</li> <li>(b) variably FDG avid or<br/>PET-: no change in size of<br/>previous lesions on CT</li> </ul>                                  |                                                                                                                                         |                                                                                                                         |
| Relapsed or progressive<br>disease | Any new lesion or increase<br>from nadir by ≥50% of<br>previously involved sites | Appearance of a new lesion<br>>1.5 cm in any axis ≥50%<br>increase in the longest<br>diameter of a previously<br>identified node >1 cm in<br>short axis or in the SPD of<br>more than one node;<br>lesions PET+ if FDG-avid<br>lymphoma or PET+<br>before therapy | ≥50% increase from nadir<br>in the SPD of any<br>previous lesions                                                                       | New or recurrent<br>involvement                                                                                         |

# PET is changing Rx Paradigms

### HL:

- Early favourable: RAPID study testing omission of RT
- Advanced HL:
  - Pre-PET:
    - EORTC study: PR (CT) need RT
    - UK LY09: RT improves PFS & OS in all subgps (non-randomised)
  - Post-PET:
    - GHSG HD15: RT can be omitted in PET- residual masses (2.5cm) after BEACOPP

DLBCL:

- Pre-PET: Initial bulk receives RT
- Post-PET:
  - Move towards RT only for PET+ residual masses
  - BCCA approach (no RT if PET-)

#### Randomised Trials of IFRT in advanced HL

| Study                                                     | CT criteria used for RT                       | RT dose  | % outcome | os  | Median follow-up, y |
|-----------------------------------------------------------|-----------------------------------------------|----------|-----------|-----|---------------------|
| EORTC 200317                                              | CR*                                           | 24 Gy    | EFS 79    | 85  | 6.6                 |
| EORTC 2007 <sup>19</sup>                                  | PR                                            | 30 Gy    | EFS 76    | 84  | 7.8                 |
| UKLG LY09 2010 <sup>20</sup><br>UK NCRI 2009 <sup>1</sup> | PR and/or bulk                                | 30 Gy    | PFS 86    | 93  | 6.9                 |
| ABVD                                                      | Sites > 5 cm or splenic disease               | 36 Gy    | PFS 76    | 90  | 4.3                 |
| Stanford V                                                | Sites > 5 cm or splenic disease               | 36 Gy    | PFS 74    | 92  |                     |
| NA Intergroup 201014,                                     | 22                                            | -        |           |     |                     |
| ABVD                                                      | Bulky mediastinal                             | 36 Gy    | FFS 85    | 95  | 5.47                |
| Stanford V                                                | Sites ≥ 5 cm or splenic disease               | 36 Gy    | FFS 71    | 87  | 5.25                |
| GHSG 2008/2009                                            |                                               | -        |           |     |                     |
| HD9 <sup>2</sup>                                          | Sites $> 5$ cm or residual sites $\ge 1.5$ cm | 30–40 Gy | FFTF 82†  | 86† | 9.25                |
| HD12 <sup>3</sup>                                         | PR/residual sites $\geq 2.5$ cm               | 30 Gy    | FFTF 87   | 90  | 6.5                 |
|                                                           | PET criteria used for RT                      |          |           |     |                     |
| GHSG (2010)4                                              |                                               |          |           |     |                     |
| HD15                                                      | PR or residual sites $\geq 2.5$ cm            | 30 Gy    | 86        | 91  | 3.2                 |

Advani R, ASH educational book 2011



#### Figure 2. Kaplan–Meier Estimates of Event-free Survival among Patients in Complete Remission after Chemotherapy Who Were Randomly Assigned to Receive Either No Radiotherapy or Involved-Field Radiotherapy.

There was no significant difference between groups (P=0.35 by the log-rank test).



Figure 3. Kaplan–Meier Estimates of Overall Survival According to the Patients' Response to Initial Chemotherapy and to Whether They Underwent Randomization

## UK LY09

Initial Bulk: >1/3 Thoracic diameter or >10 cm

#### Residual disease:

thorax

- CR < 1.0 cm
- CRu 1.1 to 2.0 cm
- PR > 2.1 cm

retrocrural space

- CR < 0.6 cm;
- CRu 0.7 to 1.6 cm
- PR > 1.7 cm

#### <u>abdomen</u>

- CR < 1.5 cm
- CRu 1.6 to 2.5 cm
- PR > 2.6 cm

#### CONSORT diagram.



Johnson P W et al. JCO 2010;28:3352-3359

#### Kaplan-Meier plots of survival by radiotherapy (RT).



Johnson P W et al. JCO 2010;28:3352-3359

### Forest plots of effect of radiotherapy (RT) in subgroups: (A) treatment characteristics; (B) baseline characteristics.



Johnson P W et al. JCO 2010;28:3352-3359

### Forest plots of effect of radiotherapy (RT) in subgroups: (A) treatment characteristics; (B) baseline characteristics.



Johnson P W et al. JCO 2010;28:3352-3359

Kaplan-Meier plot of progression-free survival (PFS) (A) by use of radiotherapy (RT) and indication for RT. (A1) no indication; (A2) incomplete response; (A3) bulky disease; (A4) bulky disease and incomplete disease.



Johnson P W et al. JCO 2010;28:3352-3359

# PET is changing Rx Paradigms

### HL:

- Early favourable: RAPID study testing omission of RT
- Advanced HL:
  - Pre-PET:
    - EORTC study: PR (CT) need RT
    - UK LY09: RT improves PFS & OS in all subgps (non-randomised)
  - Post-PET:
    - GHSG HD15: RT can be omitted in PET- residual masses (2.5cm) after BEACOPP

DLBCL:

- Pre-PET: Initial bulk receives RT
- Post-PET:
  - Move towards RT only for PET+ residual masses
  - BCCA approach (no RT if PET-)

# HD15

#### Aim:

 Reduce intensity (& toxicity) of 8 cycles of BEACOPPesc while maintaining the improved disease control with an OS of 92% and FTTF of 88% at 5 years.

#### <u>Trial:</u>

- 8-B-esc v 6-B-esc v 8-B-14 cycles
- PET question:

End of treatment PET for patients with CT residual >2.5 cm:

- +ve RT
- ve no RT

#### Result:

 NPV of 94% (@ 12 months) after 6 to 8 cycles of BEACOPP for PET- patients

Lancet. 2012 Apr 3. [Epub ahead of print]

# PET is changing Rx Paradigms

### HL:

- Early favourable: RAPID study testing omission of RT
- Advanced HL:
  - Pre-PET:
    - EORTC study: PR (CT) need RT
    - UK LY09: RT improves PFS & OS in all subgps (non-randomised)
  - Post-PET:
    - **GHSG HD15:** RT can be omitted in PET- residual masses (2.5cm) after BEACOPP

### DLBCL:

- Pre-PET: Initial bulk receives RT
- Post-PET:
  - Move towards RT only for PET+ residual masses
  - BCCA approach (no RT if PET-)

## British Columbia (Lugano 2008)



### What is new?

- Accumulating evidence that PET- with residual CT mass have a worse prognosis than PET- / CT- patients.
- Therapeutic implication: additional RT to residual masses or even salvage Rx
- Significance may be dependent on lymphoma type and treatment type.

### DLBCL

Clinical Implications of Residual mass on CT scan with Negative PET at Completion of Chemotherapy in Patients with DLBCL

Bouthaina S. Dabaja, MD<sup>1</sup>, Jack Phan, MD PhD<sup>1</sup>, L. Jeffrey Medeiros, MD<sup>3</sup>, Fu-When Liang, MS<sup>4</sup>, Carol Etzel PhD<sup>4</sup>, Osama Mawlawi, PhD<sup>5,</sup> F.B. Hagemeister, MD<sup>2</sup>, Hubert Chuang, MD<sup>5</sup>, Luis Fayad, MD<sup>2</sup>, Ferial Shihadeh, MD<sup>1</sup>, Pamela Allen, PhD<sup>1</sup>, Christine Wogan, MS<sup>1</sup> and Maria A. Rodriguez, MD<sup>2</sup>



<sup>1</sup>Departments of Radiation Oncology, <sup>2</sup>Medical Oncology and <sup>3</sup>Hematopathology, <sup>4</sup>Biostatistics, and Radiology<sup>5</sup>.The University of Texas M.D. Anderson Cancer Center, Houston, Texas

| Characteri         | stic          | No. of<br>Patients | CR by Both<br>PET and CT | CR by PET<br>Only No. | PR by Both<br>PET and CT | P Value* |
|--------------------|---------------|--------------------|--------------------------|-----------------------|--------------------------|----------|
|                    |               | (%)                | No. (%)                  | (%)                   | No. (%)                  |          |
| Sex                |               |                    |                          |                       |                          | 0.496    |
| Fe                 | emale         | 142 (47.3)         | 74 (47.7)                | 47 (50.5)             | 21 (40.4)                |          |
| M                  | ale           | 158 (52.7)         | 81 (52.3)                | 46 (49.5)             | 31 (59.6)                |          |
| Disease sta        | age           |                    |                          |                       |                          | 0.009    |
| I                  |               | 36 (12.0)          | 22 (14.2)                | 9 (9.7)               | 5 (9.6)                  |          |
| II                 |               | 45 (15.0)          | 24 (15.5)                | 12 (12.9)             | 9 (17.3)                 |          |
| 111                |               | 60 (20.0)          | 24 (15.5)                | 31 (33.3)             | 5 (9.6)                  |          |
| ١v                 | /             | 159 (53.0)         | 85 (54.8)                | 41 (44.1)             | 33 (63.5)                |          |
| Chemother          | ару           |                    |                          |                       |                          | 0.204    |
| R                  | -CHOP ≤ 4     | 26 (8.7)           | 11 (7.1)                 | 7 (7.5)               | 8 (15.4)                 |          |
| R                  | -CHOP ≥ 6     | 218 (72.7)         | 120 (77.4)               | 68 (73.1)             | 30 (57.7)                |          |
| R                  | -HCVAD        | 41 (13.7)          | 17 (11.0) <sup>´</sup>   | 13 (14.0)́            | 11 (21.2) <sup>´</sup>   |          |
| 0                  | thers         | 15 (5.0)           | 7 (4.5)                  | 5 (5.4)               | 3 (5.8)                  |          |
| Bulky disea        | ise           | - ()               |                          | - \ '/                | /                        | 0.070    |
| <                  | 5 cm          | 177 (59 0)         | 101 (65 6)               | 50 (54.3)             | 26 (50 0)                | 0.070    |
|                    | 5 cm          | 121 (40.3)         | 53 (34 4)                | 42 (45 7)             | 26 (50.0)                |          |
| ГЛ<br>ГЛ           | issina        | 2(0.7)             | 55 (54.4)                | 72 (70.1)             | 20 (00.0)                |          |
| PFT stands         | ardized unta  | ke values          |                          |                       |                          | 0 009    |
|                    | 12<br>12      | 170 (50 7)         | 105 (69 6)               | 46 (50 0)             | 28 (53 9)                | 0.003    |
| 2                  | 10            | 119 (39.7)         | 105 (00.0)               | 46 (50.0)             | 20 (33.0)                |          |
|                    | 13<br>Ioolog  | 110 (39.3)         | 40 (31.4)                | 46 (50.0)             | 20 (40.2)                |          |
| IVI<br>Ki 67 ovoro | issing        | 3 (1.0)            |                          |                       |                          | 0 165    |
| KI-67 expre        | 5000          | $E_{4}$ (19.0)     | 22 (20 8)                | 12 (17 0)             | 0 (27.2)                 | 0.165    |
| ~                  | 50%           | 54 (18.0)          | 33 (30.8)                | 12 (17.9)             | 9 (27.3)                 |          |
| 2                  | 50%           | 153 (51.0)         | 74 (69.2)                | 55 (82.1)             | 24 (72.7)                |          |
| M                  | issing        | 93 (31.0)          |                          |                       |                          |          |
| Triple             |               |                    | ( )                      |                       |                          | 0.004    |
| O                  | thers         | 150 (72.5)         | 78 (72.9)                | 46 (68.7)             | 26 (78.8)                |          |
| Po                 | ositive       | 29 (14.0)          | 8 (7.5)                  | 14 (20.9)             | 7 (21.2)                 |          |
| N                  | egative       | 28 (13.5)          | 21 (19.6)                | 7 (10.4)              | 0 (0)                    |          |
| M                  | issing        | 93 (31.0)          |                          |                       |                          |          |
| Internationa       | al Prognostic | c Index score      |                          |                       |                          | 0.093    |
| 0-                 | ·1            | 37 (12.3)          | 21 (13.5)                | 13 (14.0)             | 3 (5.8)                  |          |
| 1-                 | -2            | 181 (60.3)         | 99 (63.9)                | 47 (50.5)             | 35 (67.3)                |          |
| ≥                  | 3             | 82 (27.3)          | 35 (22.6)                | 33 (35.5)             | 14 (26.9)                |          |
| Size of resid      | dual sites    | . ,                | . ,                      | . ,                   | . ,                      | <.0001   |
| N                  | o residual    | 156 (52.0)         | 155 (100.0)              | 1 (1.1)               | 0                        |          |
| ≤                  | 2 cm          | 86 (28.7)          | 0                        | 62 (66.7)             | 24 (46.1)                |          |
| 2-                 | 5 cm          | 47 (15.7)          | 0                        | 26 (28.0)             | 21 (40.4)                |          |
| >                  | 5 cm          | 11 (3.6)           | 0                        | 4 (4.3)               | 7 (13.5)                 |          |
| Number of          | residual site | 25                 | -                        | (                     | ( )                      | <.0001   |
| N                  | 0             | 156 (52.0)         | 155 (100.0)              | 1 (1.1)               | 0                        |          |
| 1                  | site          | 57 (19.0)          | 0                        | 50 (53.8)             | 7 (13.5)                 |          |
| 2-                 | 3 sites       | 56 (18.7)          | 0                        | 32 (34.4)             | 24 (46.1)                |          |
| >                  | 3 sites       | 31 (10.3)          | 0                        | 10 (10.7)             | 21 (40.4)                |          |

Demographics of 300 patients subjects of this study

### Multivariate Analysis

|                 |                 | OS         |         |                 | PFS        |                |
|-----------------|-----------------|------------|---------|-----------------|------------|----------------|
| Variable        | Hazard<br>Ratio | 95% CI     | P value | Hazard<br>Ratio | 95% CI     | <i>P</i> value |
| Response        |                 |            | <.0001  |                 |            | <.0001         |
| CR PET/CR CT    | Ref.            |            |         | Ref.            |            |                |
| CR PET/ PR CT   | 1.70            | 0.84-3.45  |         | 1.88            | 0.96-3.69  |                |
| PR PET/PR CT    | 5.92            | 2.98-11.74 |         | 5.05            | 2.61-9.77  |                |
| Triple-positive |                 |            | 0.0413  |                 |            | 0.0475         |
| No              | Ref.            |            |         | Ref.            |            |                |
| Yes             | 2.07            | 1.03-4.15  |         | 1.93            | 1.01-3.71  |                |
| Chemotherapy    |                 |            | <.0001  |                 |            | 0.0010         |
| R-CHOP ≤ 4      | Ref.            |            |         | Ref.            |            |                |
| R-CHOP ≥ 6      | 0.18            | 0.08-0.41  |         | 0.25            | 0.12-0.55  |                |
| R-HCVAD         | 0.36            | 0.13-0.99  |         | 0.26            | 0.09-0.76  |                |
| Others          | 1.23            | 0.38-3.97  |         | 0.96            | 0.27-3.34  |                |
| IPI score       |                 |            | 0.0010  |                 |            | 0.0075         |
| 0               | Ref.            |            |         | Ref.            |            |                |
| 1-2             | 5.40            | 1.28-22.86 |         | 5.93            | 1.41-24.89 |                |
| ≥ 3             | 11.80           | 2.71-51.44 |         | 9.47            | 2.19-40.99 |                |

### Results

### Predictors of OS and PFS

- Univariate Analysis worse outcome:
  - < 6 RCHOP, high IPI score</p>
  - triple positive status
  - end of therapy response less than CR by both PET and CT
  - > 3 sites number of residual sites
  - size of residual mass on CT > 2cm.
- Multivariate analysis showed worse outcome associated with:
  - High IPI score, suboptimal chemotherapy (< 6 RCHOP), and residual mass > 2 cm on CT.



Figure 2. Probability of survival for 248 patients (excluding patients with progressive disease) by response



Figure 3. Probability of survival for 248 patients (excluding patients with progressive disease) by number of residual sites



Figure 4. Probability of survival for 248 patients (excluding patients with progressive disease) by size of residual sites

# Hodgkin





### Dimension of Residual CT Scan Mass in Hodgkin's Lymphoma (HL) is a Negative Prognostic Factor in Patients with PET Negative After Chemo +/- Radiotherapy

Massimo Magagnoli, Katia Marzo, <u>Monica Balzarotti</u>, Marcello Rodari, Rita Mazza, Laura Giordano, Sara Gandolfi, Stefania Bramanti, Antonella Anastasia, Fabio Romano Lutman, Michele Spina, Arturo Chiti, Armando Santoro

> Hematology and Nuclear Medicine Unit Humanitas Cancer Center Rozzano - Milano - Italy Oncologia Medica A, CRO Aviano - Italy

> > Sunday, December 11 2011

### PATIENT CHARACTERISTICS

| Observation period: May 2001 - August 2009 |                           |     |                |  |  |  |  |
|--------------------------------------------|---------------------------|-----|----------------|--|--|--|--|
| N^ patients                                |                           | 105 |                |  |  |  |  |
| Median age (range)                         |                           | 33  | 17-75          |  |  |  |  |
| Gender                                     | M                         | 62  |                |  |  |  |  |
| Gender                                     | F                         | 43  |                |  |  |  |  |
| Bulky disease                              | Yes                       | 41  | 37 modiastinum |  |  |  |  |
|                                            | No                        | 64  |                |  |  |  |  |
| Symptoms                                   | A                         | 80  |                |  |  |  |  |
| Symptoms                                   | В                         | 25  |                |  |  |  |  |
| Phase of                                   | 1 <sup>st</sup> diagnosis | 74  |                |  |  |  |  |
| disease                                    | 1 <sup>st</sup> relapse   | 31  |                |  |  |  |  |

### TREATMENT and RESPONSE EVALUATION

| First line            |               | 74      | 34 ABVD       |
|-----------------------|---------------|---------|---------------|
| First line            |               | /4      | 40 VEBEP      |
| Second line           |               | 31      | IGEV and ASCT |
| Dadiatharapy          | Yes           | 57      |               |
| Radiotherapy No       |               | 48      |               |
| Modian days treatment |               | 21      |               |
| median days treatment | - PET (range) | (11-63) |               |

ABVD: Doxorubicin, Bleomycin, Vinblastin, Dacarbazine

VEBEP: Vinorelbine, Cyclophosphamide, Bleomycin, Epirubicin, Prednisone

IGEV: Ifosfamide, Gemcitabine, Vinorelbine, Prednisone

ASCT: Autologous Stem Cell Transplantation

# IMPACT of RESIDUAL

| Median follow-up: 45 months |                                                      |            |       |           |      |  |
|-----------------------------|------------------------------------------------------|------------|-------|-----------|------|--|
|                             |                                                      | % 5-yr DFS | р     | % 5-yr OS | p    |  |
| All                         |                                                      | 74         |       | 88        |      |  |
| Gender                      | M<br>F                                               | 76<br>72   | .316  | 93<br>75  | .352 |  |
| Symptoms                    | A<br>B                                               | 77<br>65   | .297  | 89<br>85  | .367 |  |
| Bulky                       | Yes<br>No                                            | 77<br>70   | .451  | 85<br>92  | .717 |  |
| Phase of disease            | 1 <sup>st</sup> diagnosis<br>1 <sup>st</sup> relapse | 77<br>67   | .860  | 93<br>75  | .079 |  |
| CT residual                 | Yes<br>No                                            | 69<br>89   | 0.053 | 90<br>87  | .802 |  |

## SUMMARY



### DFS→ RESIDUAL



### IMPACT of RESIDUAL SIZE

✓ The larger the residual mass, the lower the DFS (*p* value: 0.007)
 ✓ Cut off at 4 cm (arbitrary) separated two prognostic categories

|               |                            | % 5-yr DFS | p     |
|---------------|----------------------------|------------|-------|
| Residual size | < 4 cm<br><u>&gt;</u> 4 cm | 81<br>54   | .0029 |

## Questions

- Is likelihood of residual mass related to
  - initial bulk
  - Initial FDG avidity (e.g. SUVmax)
  - IPI
- Does it have an independent prognostic significance?

# Conclusions, Thoughts & Questions

- Residual CT masses are relevant even if PET negative
- Paradigm shift?
  - FROM: role of negative PET in residual CT mass
  - TO: role of residual CT mass in negative PET?
- Prognosis may be divided (good to bad):
  - PET- / CT-
  - PET- / CT+
  - PET+ / CT-
  - PET+ / CT+

# Conclusions, Thoughts & Questions - 2

- Necessity of reporting SIZE of residual CT masses on PET/CT
- What size cut-off is relevant?
- What research can/need to be done to confirm?
- How do we account for this in any "response criteria"?

### How do we account for this in any "response criteria"?

**Options:** 

- Reintroduce CRu
- Divide CR into;
  - CMR (complete metabolic response)
  - CAR (complete anatomical response)

OR

- -CMR
- CMR with residual mass