Poster Discussion

Bruce D. Cheson, Thierry Vander Borght

Rationale for Risk Adapted Strategies

- Improve outcome in poor-risk patients
- Reduce therapy for lower risk patients

Interim FDG-PET – DLBCL: The Early Days

Heterogeneity of Prediction of PFS

	PET-	MRU	PET+	
Spaepen ('02)	84%	-	0% (n	nedian fu 1107 d)
Haioun ('05)	82 %	-	43%	(2-year PFS)
Mikhaeel ('05)	93%	59%	30%	(2-year PFS)

	Spaepen	Haioun	Mikhaeel
% progression	51	23	40
% PET+	53	40	43
% DLBCL	67	94	79
% CHOP or RCHOP	80	30	74
% Rituximab	0	41	NR (<74)

Negative Studies in DLBCL

- 1. Gigli, ASH 2008
- 2. Safar, ASH 2009
- 3. Micallet, ASH 2009
- 4. Moskowitz, JCO 2010
- 5. Cashen, J Nucl Med 2011
- 6. Pregno, Blood 2012

PFS By Interim vs Posttreatment PET in 88 DLBCL Pts Treated with R-CHOP

F-PET

Pregno P et al. Blood 2012;119:2066-2073

Variability in Interim Studies

- Differences in patient groups
- More standardized conduct of scans
- Differences in interpretation of scans
- Differences in treatments
- Use of rituximab

Phase II Trial of Dose-Dense R-CHOP With Risk Adapted Therapy for DLBCL

Moskowitz, C. H. et al. J Clin Oncol; 28:1896-1903 2010

Outcome based on interim evaluation

Moskowitz, C. H. et al. J Clin Oncol; 28:1896-1903 2010

Outcome estimates based on Kaplan-Meier analysis

Moskowitz, C. H. et al. J Clin Oncol; 28:1896-1903 2010

Interim PET in HL

Author	Pts	Cycles of Tx	PET- (%)	PFS/EFS (%)	PET+ (%)	PFS/EF S (%)
Zinzani ('99)	40	2	80	97	20	12
Kostakoglu ('06)	23	1	74	100	26	12.5
Hutchings ('05)	85	2-3	72	94	13	38
Hutchings ('06)	77	2	79	95	21	31
Gallamini ('07)	260	2	81	95	19	14
Markova ('09)	50	4	72	100	28	86

Progression-free survival according to IPS group and PET results after two cycles of ABVD

Gallamini, A. et al. J Clin Oncol; 25:3746-3752 2007

BEACOPP treatment for 154 PET-2positive advanced-stage HL patients

Gallamini A. et al, Br J Haematol, 152:551, 2011

CALGB Risk-Adapted Studies in HL

Protocol Number	PI	Pt. Population
CALGB-50604	Straus	Stage I-II non-bulky
CALGB-50801	LaCasce	Stage I-II bulky
S0816	Press/Bartlett/Ev ens	Stage III-IV

- Dann et al, abstract A4
 275 patients (ongoing study)
- Conclusions
 - Minimal tx for early stage
 - Decrease tx for advanced

Israel H2 trial – stages IA and IIA

Favorable

Unfavorable

Risk factors: Extra-nodal disease, MM>10cm, ESR > 50, ≥3 regions, Age > 50, LD histology

- Dann et al, abstract A4
 275 patients (ongoing study)
- Conclusions
 - Minimal tx for early stage
 - Decrease tx for advanced

- Miltényi et al, abstract A9
 n =108
 - Treatment not specified
 - NPV 93.8
 - PPV 59.2
 - Added value of LDH, age, histology (cMC)

Angelopoulou, abstract A5

 Predicts outcome with ASCT
 Some positive patients still benefit
 Time points/interpretation not clear
 Chemosensitivity important vs PET +/ Posttreatment PET a better predictor

Interim PET in MCL

Ribakovsky et al – abstract A16

Predicts neither PFS nor OS
ASCT may have improved outcome

Bourre et al – abstract A17

39 elderly patients
No intervention
Predicts outcome

Interim PET in NKT-cell NHL

- Khong, et al abstract A19
 - -23 pts
 - Mid-tx PET only predictor of PFS, OS

Outcome of patients with T/NK

Interim PET ALK-s

PostTx PET ALK-s

Cahu et al, Ann Oncol, 22:705, 2011

Problems in Interpreting Data

- Small numbers of heterogeneous pts
- Was there standardization/adjudication of interpretation?
- Treatment not-specified/not standard
- What do we do with the information?
- How does it compare with post-tx PET?
- Not clear that changing therapy makes a difference?