6th international workshop on PET in Lymphoma

Problems in MTV measurements in lymphoma

Irène Buvat and Christophe Nioche with patient data from Michel Meignan

Imagerie Moléculaire In Vivo (IMIV) CEA – Service Hospitalier Frédéric Joliot Orsay, France <u>irene.buvat@u-psud.fr</u>

6th international workshop on PET in Lymphoma

Problems in MTV measurements in lymphoma

Irène Buvat and Christophe Nioche with patient data from Michel Meignan

Imagerie Moléculaire In Vivo (IMIV) CEA – Service Hospitalier Frédéric Joliot Orsay, France <u>irene.buvat@u-psud.fr</u>

Outline

- MTV measurement: current status
- How to go beyond the current limitations
 - make MTV calculation easier
 - use a cooperation approach
- Conclusion

Existing MTV delineation methods

- Many methods:
 - Using a fixed SUV threshold (eg, voxels with SUV>2.5 is tumor)
 - Using a relative SUV threshold (eg, voxels with SUV>41% SUV_{max} is tumor)
 - Using a threshold relative to the liver activity (eg, SUV > $1.25 \text{ SUV}_{max_{liver}}$)
 - Using an adaptive threshold accounting for ${\rm SUV}_{\rm max}$ and $\mbox{ surrounding activity (eg, Nestle method^1)}$
 - Using a fitting method accounting for SUV_{max}, surrounding activity and spatial resolution of the imaging system (Tylski method²)
 - Using a threshold adjusted iteratively as a function of the tumor-to-background activity, requiring a calibration curve (Daisne method³)
 - Using a threshold adjusted iteratively as a function of the mean SUV in the tumor region, requiring a calibration curve (Black method⁴)

- and many others ...

¹Nestle et al J Nucl Med 2005 ²Tylski et al J Nucl Med 2010 ³Daisne et al Radiother Oncol 2003 ⁴Black et al Int J Radiat Oncol Biol Phys 2004

Performance of these methods

• All have merits and weaknesses, eg:

Meignan et al EJNMMI 2014

• Fortunately, all of them provide correlated results

but with substantial differences : Bland Altman plots

Peripheral T cell lymphoma

- No method is always the most accurate: performance vary as a function of the activity distribution, noise, spatial resolution, contrast
- In a given setting, each method has some specific bias.
 A specific cut-off should ideally be used to distinguish between groups

Table 1. Studies on the Prognostic Value of MTV in Lymphoma									
Tumor Volume Parameters									
Study	Type of Lymphoma	Patients (No.)	Median SUV	Threshold (%)	Median MTV (cm ³)	Range (cm ³)*	Predictors of PFS	Determination of MTV Cutoff	
Kanoun et al ¹⁵	HL	59	NR	41	117	4-1,611	MTV 225 cm ³ ields 4-year PFS 85% v 42%	ROC analysis†, no validation sample	
Sasanelli et al ¹⁷	DLBCL	114	NR	41	313	4-2,650	MT(550 cm ³) ields 3-year PFS 77% <i>v</i> 60%	ROC analysis, no validation sample	
Adams et al ¹¹	DLBCL	73	22.0	40	272	6-2,454	Neither MTV nor TLG predicted outcome	N/A	
Mikhaeel et al ¹⁶	DLBCL	147	27.2	41	595	2-7,360	MTV 396 cm ³ yields 5-year PFS 92% v 42% Best predictive model combines MTV with i-PET Deauville score	ROC analysis, no validation sample	
Cottereau et al ²⁶	DLBCL	81	18	41	320	IQR: 106-668	MTV 300 cm ³ vields 5-year PFS 75% v 42%	ROC analysis, no validation sample	
Schöder et al ¹⁸	DLBCL	65	23.4	Various‡	226	9-3,453	MTV did not predict	N/A	
Ceriani et al ¹²	PMBL	103	18.8	25	406	NR	MTV 703 cm ³ yields 5-year PFS 97% v 60% TLG 5,814 yields 5-year PFS 99% v 64%	ROC analysis, no validation sample	
Cottereau et al ¹³	PTCL	108	14	41	224	3-3,824	MTV 230 cm ³ vields 2-year PFS 71% v 26%	ROC analysis, no validation sample	
Meignan et al ¹⁹	FL 1-3a	185	10.0	41	297	IQR: 135-567	MTV 510 cm ³ ields 2-year PFS 87% <i>v</i> 58%	X-tile analysis	

Schöder et al JCO 2016

These results regarding MTV are consistent with previously reported results regarding SUV to assess tumor response

Metastatic colorectal cancer

Interim PET @ day 14 of treatment Targeting a 95% sensitivity for detecting responding lesions

Index	Cut-off	Sensitivity	Specificity
$\Delta \text{SUV}_{\text{max}}$	-14%	95%	53%
$\Delta \text{SUV}_{\text{mean40\%}}$	-22%	95%	64%
$\Delta \text{SUV}_{\text{max}}$	-15%	80%	53%
$\Delta \text{SUV}_{40\%}$	-15%	95%	53%

Buvat et al EJNMMI 2012

Current limitations in MTV measurements in lymphomas

- There is no such thing as THE accurate method for MTV estimate
- TMTV measurement is tedious: tumors should first be roughly delineated
- Choice of the "optimal" threshold unclear for prospective studies
- Results are good but far from perfect, eg:

AUC ~ 0.68 to 0.71 for PFS prediction in peripheral T cell lymphomas¹ AUC ~ 0.60 to 0.62 for OS prediction in peripheral T cell lymphomas¹ AUC ~ 0.62 for PFS prediction in follicular lymphomas²

- Standardization of PET image quality is on-going and useful but:
 - scanners are evolving faster than standardization
 - what about "old" cohorts?

Is MTV calculation worth the effort? How can we move forward?

¹ Cottereau et al J Nucl Med 2016 ² Meignan et al JCO 2016

How can we go beyond? First track

Make the TMTV calculation **easy**, traceable, reproducible, so that a large number of centres can gain experience with this metrics and more results can be obtained

This involves:

1) Simplifying the initial delineation of regions

2) Having several MTV delineation methods available

3) Allowing for user interaction as no method is perfect and medical expertise is required

4) Making a software widely available

5) Providing user assistance

Texture analysis: is it worth it and where are we?

- In lymphoma, still to be investigated closely¹, but worth dedicated studies see posters
- Textural metrics calculated from PET images start being understood:
 - How they correlate to conventional metrics^{2,3}
 - How robust they are^{2,4}
 - How they should be calculated^{5,6}
 - How they relate to visual assessment of activity distribution heterogeneity⁷

- How they relate to the spatial organisation of cells as seen on pathological slides⁸

¹Lartizien et al IEEE J Biomed. Health Inform 2014
²Orlhac et al J Nucl Med 2014
³Hatt et al J Nucl Med 2015
⁴Yan et al J Nucl Med 2015
⁵Orlhac et al Plos One 2015
⁶Leijenaar et al Sci Rep 2015
⁷Orlhac et al J Nucl Med 2016b (in press)
⁸Orlhac et al J Nucl Med 2016a